Lecture 15: Basic Graph Algorithms

Breadth First Search

BFS idea. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

$S \subset L_1 \subset L_2 \subset L_k$

BFS.

- $L_0 = \{s\}.$
- $L_1 = \text{all neighbors of } L_0$.
- $L_2=$ all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Def: The distance from u to v is the number of edges on the shortest path from u to v.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

BFS Algorithm

```
BFS (G, S):
for each vertex u \in V - \{s\}
      u.color \leftarrow white
      u.d \leftarrow \infty
      u.p \leftarrow nil
s.color \leftarrow gray
s,d \leftarrow 0
initialize an empty queue Q
Enqueue (Q, S)
while Q \neq \emptyset do
      u \leftarrow \text{Dequeue}(Q)
       for each v \in Adj[u]
             if v.color = white then
                    v.color \leftarrow gray
                    v.d \leftarrow u.d + 1
                    v.p \leftarrow u
                    Enqueue (Q, v)
      u.color \leftarrow black
```

Colors:

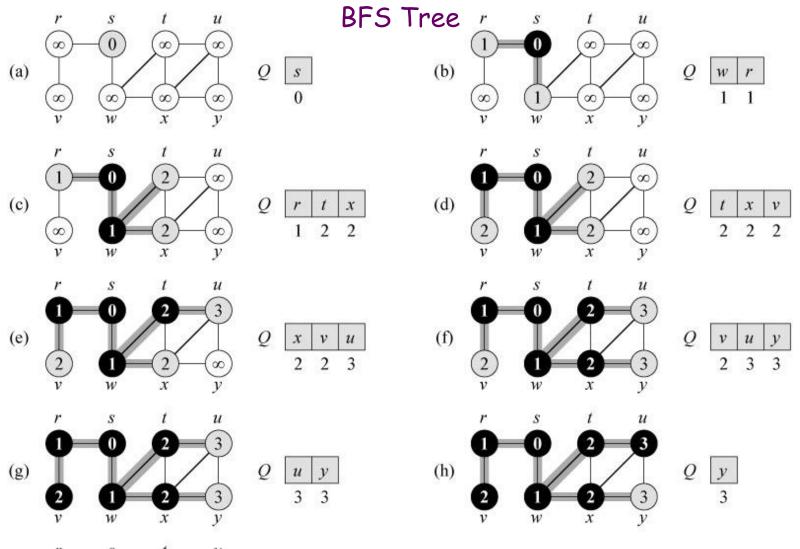
- white: undiscovered
- gray: discovered, but neighbors not fully explored (these nodes are in Q)
- black: discovered and neighbors fully explored

Parent pointers:

- Pointing to the node that leads to its discovery
- Parent must be in L_{i-1}
- Can follow parent pointers to find the actual shortest path
- The pointers form a tree, rooted at s

Running time:

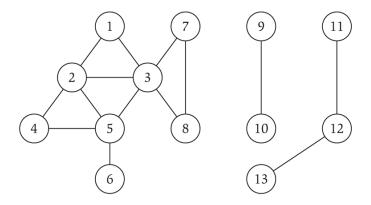
 $\sum_{u} (1 + \deg(u)) = \Theta(V + E)$, which is $\Theta(E)$ if the graph is connected.



Note: BFS finds the shortest path from s to every other node.

Connected Component

Connected component containing s. All nodes reachable from s.



Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

BFS starting from s finds the connected component containing s.

Repeatedly running BFS from an undiscovered node finds all the connected components.

Flood Fill

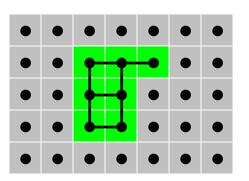
Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

Node: pixel.

Edge: two neighboring lime pixels.

Blob: connected component of lime pixels.

recolor lime green blob to blue Tux Paint Magic Tools Redo Colors



Flood Fill

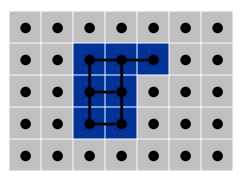
Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

Node: pixel.

Edge: two neighboring lime pixels.

Blob: connected component of lime pixels.

recolor lime green blob to blue Tux Paint Magic Tools Redo Click in the picture to fill that area with color.



s-t connectivity and shortest path in directed graphs

s-t connectivity (often called reachability for directed graphs). Given two nodes s and t, is there a path from s to t?

- Undirected graph: s can reach $t \Leftrightarrow t$ can reach s
- Directed graph: Not necessarily true

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

- Undirected graph: p is the shortest path from s to $t \Leftrightarrow p$ is the shortest path from t to s
- Directed graph: Not necessarily true

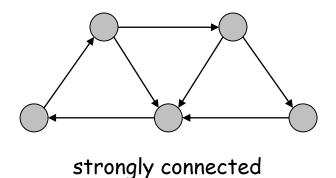
BFS on a directed graph. Same as in undirected case

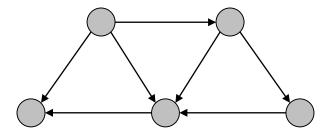
• Ex: Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity in Directed Graphs

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.



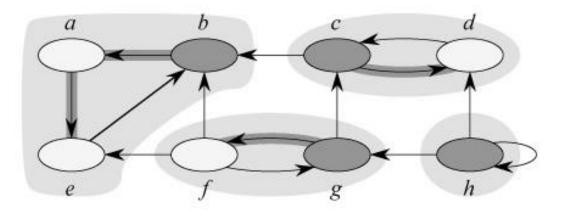


not strongly connected

Algorithm for checking strong connectivity

- Pick any node s.
- \blacksquare Run BFS from s in G.
- lacksquare Reverse all edges in G, and run BFS from s.
- Return true iff all nodes reached in both BFS executions.

Strongly Connected Components



```
Strongly-Connected-Components (G):

create G^{rev} which is G with all edges reversed while there are nodes left do

u \leftarrow \text{any node}

run BFS in G starting from u

run BFS in G^{rev} starting from u

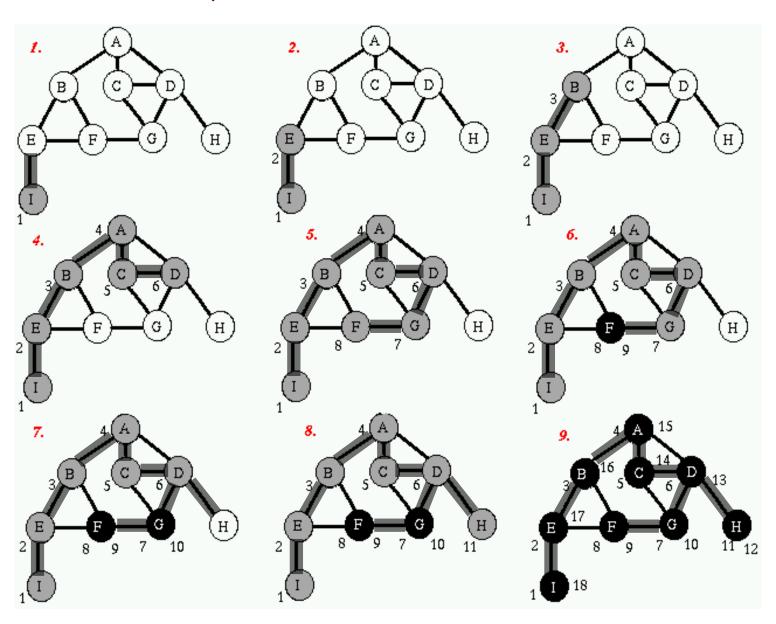
C \leftarrow \{\text{nodes reached in both BFSs}\}

output C as a strongly connected component remove C and its edges from G and G^{rev}
```

Running time: O(VE)

See text book for a $\Theta(V + E)$ algorithm (not required)

Depth First Search and DFS Tree



DFS Algorithm

```
DFS (G):
for each vertex u \in V do
     u.color \leftarrow white
     u.p \leftarrow nil
for each vertex u \in V do
     if u.color = white then
           DFS-Visit(u)
DFS-Visit(u):
u.color \leftarrow gray
for each v \in Adj[u] do
     if v.color = white then
           v.p \leftarrow u
           DFS-Visit(v)
u.color \leftarrow black
```

Running time: $\Theta(V + E)$

Colors:

- white: undiscovered
- gray: discovered, but neighbors not fully explored (on recursion stack)
- black: discovered and neighbors fully explored

Parent pointers:

- Pointing to the node that leads to its discovery
- The pointers form a tree, rooted at s

Application: Cycle Detection

Problem: Given an undirected graph G = (V, E), check if it contains a cycle.

Idea:

- A tree (connected and acyclic) has exactly V-1 edges.
- If it has less edges, it cannot be connected.
- If it has more edges, it must contain a cycle.

Algorithm:

- ullet Run BFS/DFS to find all the connected components of G.
- For each connected component, count the number of edges.
- If # edges $\geq \#$ vertices, return "cycle detected".

Running time: $\Theta(V + E)$

Q: What if we also want to find a cycle (any is OK) if it exists?

Tree edges, back edges, and cross edges

After we have run BFS or DFS on an undirected graph, the edges can be classified into 3 types:

- Tree edges: traversed by the BFS/DFS.
- Back edges: connecting a node with one of its ancestors in the BFS/DFS-tree except its parent.
- Cross edges: connecting two nodes with no ancestor/descendent relationship.

Theorem: In a DFS on an undirected graph, there are no cross edges.

Pf: Consider any edge (u, v) in G.

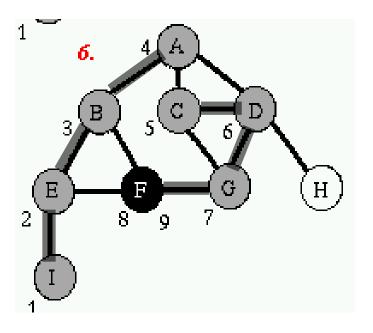
- Without loss of generality, assume u is discovered before v.
- Then v is discovered while u is gray (why?).
- Hence v is in the DFS subtree rooted at u.
 - If v.p = u, then (u, v) is a tree edge.
 - If $v. p \neq u$, then (u, v) is a back edge.

Theorem: In a BFS on an undirected graph, there are no back edges.

DFS for cycle detection

Idea: Run DFS on each connected component of G.

- If there is a back edge (u, v). Then, v is an ancestor (but not parent) of u in the DFS trees. There is thus a path from v to u in the DFS-tree, and the back edge (u, v) completes a cycle.
- If there is no back edge, then there are only tree edges, so the graph is a forest, and hence is acyclic.



DFS for cycle detection

```
CycleDetection (G):
for each vertex u \in V do
     u.color \leftarrow white
     u.p \leftarrow nil
for each vertex u \in V do
     if u.color = white then DFS-Visit(u)
return "No cycle"
DFS-Visit(u):
u.color \leftarrow gray
for each v \in Adj[u] do
     if v.color = white then
          v.p \leftarrow u
          DFS-Visit(v)
     else if v \neq u.p then
          output "Cycle found:"
          while u \neq v do
                output u
                u \leftarrow u.p
          output v
          return
u.color \leftarrow black
```

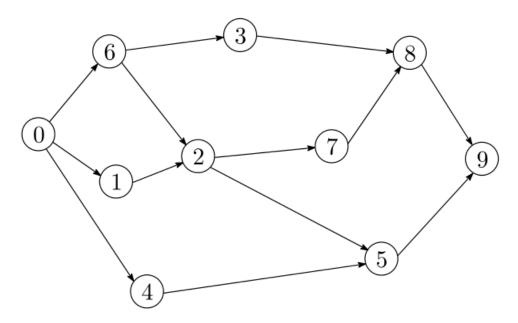
Running time: $\Theta(V)$

- Only traverse DFS-tree edges, until the first nontree edge is found
- At most V-1 tree edges

Directed Acyclic Graphs and Topological Ordering

Def. A DAG is a directed graph that contains no (directed) cycles.

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes such that for every edge $u \to v$, u is ordered before v.



Examples of topological orderings:

- 0, 6, 1, 4, 3, 2, 5, 7, 8, 9
- 0, 4, 1, 6, 2, 5, 3, 7, 8, 9

...

Topological Sort Algorithm

Observations

- Starting vertex must have zero indegree
- If such a vertex doesn't exist, the graph would not be acyclic

Algorithm

- A vertex with zero in-degree can be output right away.
- If a vertex u is output, then all the edges (u,v) are no longer useful, since v does not need to wait for u anymore
 - Can remove all the edges (u, v)
- With vertex u removed, the new graph is still a DAG
 - Repeat step until no vertex is left

```
TopologicalSort(G):

compute deg^{in}(u) for all u

let Q be an empty queue

for each u \in V do

if deg^{in}(u) = 0 then

Enqueue(Q,u)

while Q \neq \emptyset do

u \leftarrow \text{Dequeue}(Q)

output u

for each v \in Adj(u) do

deg^{in}(v) \leftarrow deg^{in}(v) - 1

if deg^{in}(v) = 0 then

Enqueue(Q,v)
```

Running time: $\Theta(V + E)$