
Lecture 15: Basic Graph Algorithms

Breadth First Search

BFS.

 𝐿0 = {𝑠}.

 𝐿1 = all neighbors of 𝐿0.

 𝐿2 = all nodes that do not belong to 𝐿0 or 𝐿1, and that have an edge

to a node in 𝐿1.

 𝐿𝑖+1 = all nodes that do not belong to an earlier layer, and that

have an edge to a node in 𝐿𝑖.

Def: The distance from 𝑢 to 𝑣 is the number of edges on the shortest

path from 𝑢 to 𝑣.

Theorem. For each 𝑖, 𝐿𝑖 consists of all nodes at distance exactly 𝑖

from 𝑠. There is a path from 𝑠 to 𝑡 iff 𝑡 appears in some layer.

2

𝑠 𝐿1 𝐿2 𝐿𝑘

BFS idea. Explore outward from 𝑠 in all possible directions, adding
nodes one “layer” at a time.

BFS Algorithm

3

BFS(𝐺, 𝑠):
for each vertex 𝑢 ∈ 𝑉 − {𝑠}

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒
𝑢. 𝑑 ← ∞
𝑢. 𝑝 ← 𝑛𝑖𝑙

𝑠. 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦
𝑠. 𝑑 ← 0
initialize an empty queue 𝑄
Enqueue(𝑄, 𝑠)
while 𝑄 ≠ Ø do

𝑢 ← Dequeue(𝑄)
for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢]

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then

𝑣. 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦
𝑣. 𝑑 ← 𝑢. 𝑑 + 1
𝑣. 𝑝 ← 𝑢
Enqueue(𝑄, 𝑣)

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

Running time:

 𝑢(1 +deg(𝑢)) = Θ(𝑉 + 𝐸), which is Θ 𝐸 if the graph is connected.

Colors:

 white: undiscovered

 gray: discovered, but

neighbors not fully explored

(these nodes are in 𝑄)

 black: discovered and

neighbors fully explored

Parent pointers:

 Pointing to the node that

leads to its discovery

 Parent must be in 𝐿𝑖−1
 Can follow parent pointers to

find the actual shortest path

 The pointers form a tree,

rooted at 𝑠

BFS Tree

4

Note: BFS finds the shortest path from 𝑠

to every other node.

Connected Component

Connected component containing 𝑠. All nodes reachable from 𝑠.

Connected component containing node 1 = {1, 2, 3, 4, 5, 6, 7, 8}.

BFS starting from 𝑠 finds the connected component containing 𝑠.

Repeatedly running BFS from an undiscovered node finds all the

connected components.

5

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire

blob of neighboring lime pixels to blue.

 Node: pixel.

 Edge: two neighboring lime pixels.

 Blob: connected component of lime pixels.

6

recolor lime green blob to blue

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire

blob of neighboring lime pixels to blue.

 Node: pixel.

 Edge: two neighboring lime pixels.

 Blob: connected component of lime pixels.

7

recolor lime green blob to blue

s-t connectivity and shortest path in directed graphs

s-t connectivity (often called reachability for directed graphs). Given

two nodes 𝑠 and 𝑡, is there a path from 𝑠 to 𝑡?

 Undirected graph: 𝑠 can reach 𝑡 ⇔ 𝑡 can reach 𝑠

 Directed graph: Not necessarily true

s-t shortest path problem. Given two node 𝑠 and 𝑡, what is the length

of the shortest path between s and t?

 Undirected graph: 𝑝 is the shortest path from 𝑠 to 𝑡 ⇔ 𝑝 is the

shortest path from 𝑡 to 𝑠

 Directed graph: Not necessarily true

BFS on a directed graph. Same as in undirected case

 Ex: Web crawler. Start from web page 𝑠. Find all web pages

linked from s, either directly or indirectly.

8

Strong Connectivity in Directed Graphs

Def. Node 𝑢 and 𝑣 are mutually reachable if there is a path from 𝑢 to

𝑣 and also a path from 𝑣 to 𝑢.

Def. A graph is strongly connected if every pair of nodes is mutually

reachable.

Algorithm for checking strong connectivity

 Pick any node 𝑠.

 Run BFS from 𝑠 in 𝐺.

 Reverse all edges in 𝐺, and run BFS from 𝑠.

 Return true iff all nodes reached in both BFS executions.

9

strongly connected not strongly connected

Strongly Connected Components

Running time: 𝑂(𝑉𝐸)

See text book for a Θ(𝑉 + 𝐸) algorithm (not required)

10

Strongly-Connected-Components(𝐺):
create 𝐺𝑟𝑒𝑣 which is 𝐺 with all edges reversed

while there are nodes left do

𝑢 ← any node

run BFS in 𝐺 starting from 𝑢
run BFS in 𝐺𝑟𝑒𝑣 starting from 𝑢
𝐶 ← {nodes reached in both BFSs}
output 𝐶 as a strongly connected component

remove 𝐶 and its edges from 𝐺 and 𝐺𝑟𝑒𝑣

Depth First Search and DFS Tree

11

DFS Algorithm

12

DFS(𝐺):
for each vertex 𝑢 ∈ 𝑉 do

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒
𝑢. 𝑝 ← 𝑛𝑖𝑙

for each vertex 𝑢 ∈ 𝑉 do

if 𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then

DFS-Visit(𝑢)

DFS-Visit(𝑢):
𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦
for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then

𝑣. 𝑝 ← 𝑢
DFS-Visit(𝑣)

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

Running time: Θ(𝑉 + 𝐸)

Colors:

 white: undiscovered

 gray: discovered, but

neighbors not fully explored

(on recursion stack)

 black: discovered and

neighbors fully explored

Parent pointers:

 Pointing to the node that

leads to its discovery

 The pointers form a tree,

rooted at 𝑠

Application: Cycle Detection

Problem: Given an undirected graph 𝐺 = 𝑉, 𝐸 , check if it contains a cycle.

Idea:

 A tree (connected and acyclic) has exactly 𝑉 − 1 edges.

 If it has less edges, it cannot be connected.

 If it has more edges, it must contain a cycle.

Algorithm:

 Run BFS/DFS to find all the connected components of 𝐺.

 For each connected component, count the number of edges.

 If # edges ≥ # vertices, return “cycle detected”.

Running time: Θ(𝑉 + 𝐸)

Q: What if we also want to find a cycle (any is OK) if it exists?

13

Tree edges, back edges, and cross edges

After we have run BFS or DFS on an undirected graph, the edges can

be classified into 3 types:

 Tree edges: traversed by the BFS/DFS.

 Back edges: connecting a node with one of its ancestors in the

BFS/DFS-tree except its parent.

 Cross edges: connecting two nodes with no ancestor/descendent

relationship.

Theorem: In a DFS on an undirected graph, there are no cross edges.

Pf: Consider any edge (𝑢, 𝑣) in 𝐺.

 Without loss of generality, assume 𝑢 is discovered before 𝑣.

 Then 𝑣 is discovered while 𝑢 is gray (why?).

 Hence 𝑣 is in the DFS subtree rooted at u.

– If 𝑣. 𝑝 = 𝑢, then (𝑢, 𝑣) is a tree edge.

– If 𝑣. 𝑝 ≠ 𝑢, then (𝑢, 𝑣) is a back edge.

Theorem: In a BFS on an undirected graph, there are no back edges.

14

DFS for cycle detection

Idea: Run DFS on each connected component of 𝐺.

 If there is a back edge (𝑢, 𝑣). Then, 𝑣 is an ancestor (but not

parent) of 𝑢 in the DFS trees. There is thus a path from 𝑣 to 𝑢 in

the DFS-tree , and the back edge (𝑢, 𝑣) completes a cycle.

 If there is no back edge, then there are only tree edges, so the

graph is a forest, and hence is acyclic.

15

DFS for cycle detection

Running time: Θ(𝑉)

 Only traverse DFS-tree

edges, until the first non-

tree edge is found

 At most 𝑉 − 1 tree edges

16

CycleDetection(𝐺):
for each vertex 𝑢 ∈ 𝑉 do

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒
𝑢. 𝑝 ← 𝑛𝑖𝑙

for each vertex 𝑢 ∈ 𝑉 do

if 𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then DFS-Visit(𝑢)
return “No cycle”

DFS-Visit(𝑢):
𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦
for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then

𝑣. 𝑝 ← 𝑢
DFS-Visit(𝑣)

else if 𝑣 ≠ 𝑢. 𝑝 then

output “Cycle found:"

while 𝑢 ≠ 𝑣 do

output 𝑢
𝑢 ← 𝑢. 𝑝

output 𝑣
return

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

Directed Acyclic Graphs and Topological Ordering

Def. A DAG is a directed graph that contains no (directed) cycles.

Def. A topological order of a directed graph 𝐺 = (𝑉, 𝐸) is an ordering

of its nodes such that for every edge 𝑢 → 𝑣, 𝑢 is ordered before 𝑣.

Examples of topological orderings:

 0, 6, 1, 4, 3, 2, 5, 7, 8, 9

 0, 4, 1, 6, 2, 5, 3, 7, 8, 9

 …

17

Topological Sort Algorithm

Observations

 Starting vertex must have zero in-

degree

 If such a vertex doesn’t exist, the

graph would not be acyclic

Algorithm

 A vertex with zero in-degree can be

output right away.

 If a vertex 𝑢 is output, then all the

edges (𝑢, 𝑣) are no longer useful,

since 𝑣 does not need to wait for 𝑢

anymore

– Can remove all the edges (𝑢, 𝑣)

 With vertex 𝑢 removed, the new

graph is still a DAG

– Repeat step until no vertex is left

18

TopologicalSort(𝐺):
compute 𝑑𝑒𝑔𝑖𝑛(𝑢) for all 𝑢
let 𝑄 be an empty queue

for each 𝑢 ∈ 𝑉 do

if 𝑑𝑒𝑔𝑖𝑛 𝑢 = 0 then

Enqueue(𝑄, 𝑢)
while 𝑄 ≠ ∅ do

𝑢 ← Dequeue(𝑄)
output 𝑢
for each 𝑣 ∈ 𝐴𝑑𝑗(𝑢) do

𝑑𝑒𝑔𝑖𝑛 𝑣 ← 𝑑𝑒𝑔𝑖𝑛 𝑣 − 1
if 𝑑𝑒𝑔𝑖𝑛 𝑣 = 0 then

Enqueue(𝑄, 𝑣)

Running time: Θ(𝑉 + 𝐸)

