
Lecture 15: Basic Graph Algorithms



Breadth First Search

BFS.

 𝐿0 = {𝑠}.

 𝐿1 = all neighbors of 𝐿0.

 𝐿2 = all nodes that do not belong to 𝐿0 or 𝐿1, and that have an edge 

to a node in 𝐿1.

 𝐿𝑖+1 = all nodes that do not belong to an earlier layer, and that 

have an edge to a node in 𝐿𝑖.

Def: The distance from 𝑢 to 𝑣 is the number of edges on the shortest 

path from 𝑢 to 𝑣.

Theorem.  For each 𝑖, 𝐿𝑖 consists of all nodes at distance exactly 𝑖

from 𝑠.  There is a path from 𝑠 to 𝑡 iff 𝑡 appears in some layer.
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𝑠 𝐿1 𝐿2 𝐿𝑘

BFS idea. Explore outward from 𝑠 in all possible directions, adding 
nodes one “layer” at a time.



BFS Algorithm
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BFS(𝐺, 𝑠):
for each vertex 𝑢 ∈ 𝑉 − {𝑠}

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒
𝑢. 𝑑 ← ∞
𝑢. 𝑝 ← 𝑛𝑖𝑙

𝑠. 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦
𝑠. 𝑑 ← 0
initialize an empty queue 𝑄
Enqueue(𝑄, 𝑠)
while 𝑄 ≠ Ø do

𝑢 ← Dequeue(𝑄)
for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢]

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then

𝑣. 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦
𝑣. 𝑑 ← 𝑢. 𝑑 + 1
𝑣. 𝑝 ← 𝑢
Enqueue(𝑄, 𝑣)

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

Running time: 

 𝑢(1 +deg(𝑢)) = Θ(𝑉 + 𝐸), which is Θ 𝐸 if the graph is connected.

Colors:

 white: undiscovered

 gray: discovered, but 

neighbors not fully explored 

(these nodes are in 𝑄)

 black: discovered and 

neighbors fully explored

Parent pointers:

 Pointing to the node that 

leads to its discovery

 Parent must be in 𝐿𝑖−1
 Can follow parent pointers to 

find the actual shortest path

 The pointers form a tree, 

rooted at 𝑠



BFS Tree
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Note: BFS finds the shortest path from 𝑠

to every other node.



Connected Component

Connected component containing 𝑠.  All nodes reachable from 𝑠.

Connected component containing node 1 = {1, 2, 3, 4, 5, 6, 7, 8}.

BFS starting from 𝑠 finds the connected component containing 𝑠.

Repeatedly running BFS from an undiscovered node finds all the 

connected components.
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Flood Fill

Flood fill.  Given lime green pixel in an image, change color of entire 

blob of neighboring lime pixels to blue.

 Node:  pixel.

 Edge:  two neighboring lime pixels.

 Blob:  connected component of lime pixels.
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recolor lime green blob to blue



Flood Fill

Flood fill.  Given lime green pixel in an image, change color of entire 

blob of neighboring lime pixels to blue.

 Node:  pixel.

 Edge:  two neighboring lime pixels.

 Blob:  connected component of lime pixels.
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s-t connectivity and shortest path in directed graphs

s-t connectivity (often called reachability for directed graphs).  Given 

two nodes 𝑠 and 𝑡, is there a path from 𝑠 to 𝑡?

 Undirected graph: 𝑠 can reach 𝑡 ⇔ 𝑡 can reach 𝑠

 Directed graph: Not necessarily true

s-t shortest path problem.  Given two node 𝑠 and 𝑡, what is the length 

of the shortest path between s and t?

 Undirected graph: 𝑝 is the shortest path from 𝑠 to 𝑡 ⇔ 𝑝 is the 

shortest path from 𝑡 to 𝑠

 Directed graph: Not necessarily true

BFS on a directed graph. Same as in undirected case

 Ex: Web crawler. Start from web page 𝑠.  Find all web pages 

linked from s, either directly or indirectly.
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Strong Connectivity in Directed Graphs

Def.  Node 𝑢 and 𝑣 are mutually reachable if there is a path from 𝑢 to 

𝑣 and also a path from 𝑣 to 𝑢.

Def.  A graph is strongly connected if every pair of nodes is mutually 

reachable.

Algorithm for checking strong connectivity

 Pick any node 𝑠.

 Run BFS from 𝑠 in 𝐺.

 Reverse all edges in 𝐺, and run BFS from 𝑠.

 Return true iff all nodes reached in both BFS executions.
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strongly connected not strongly connected



Strongly Connected Components

Running time: 𝑂(𝑉𝐸)

See text book for a Θ(𝑉 + 𝐸) algorithm (not required)
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Strongly-Connected-Components(𝐺):
create 𝐺𝑟𝑒𝑣 which is 𝐺 with all edges reversed

while there are nodes left do

𝑢 ← any node

run BFS in 𝐺 starting from 𝑢
run BFS in 𝐺𝑟𝑒𝑣 starting from 𝑢
𝐶 ← {nodes reached in both BFSs}
output 𝐶 as a strongly connected component

remove 𝐶 and its edges from 𝐺 and 𝐺𝑟𝑒𝑣



Depth First Search and DFS Tree
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DFS Algorithm
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DFS(𝐺):
for each vertex 𝑢 ∈ 𝑉 do

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒
𝑢. 𝑝 ← 𝑛𝑖𝑙

for each vertex 𝑢 ∈ 𝑉 do

if 𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then

DFS-Visit(𝑢)

DFS-Visit(𝑢):
𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦
for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then

𝑣. 𝑝 ← 𝑢
DFS-Visit(𝑣)

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

Running time: Θ(𝑉 + 𝐸)

Colors:

 white: undiscovered

 gray: discovered, but 

neighbors not fully explored 

(on recursion stack)

 black: discovered and 

neighbors fully explored

Parent pointers:

 Pointing to the node that 

leads to its discovery

 The pointers form a tree, 

rooted at 𝑠



Application: Cycle Detection

Problem: Given an undirected graph 𝐺 = 𝑉, 𝐸 , check if it contains a cycle.

Idea:

 A tree (connected and acyclic) has exactly 𝑉 − 1 edges.

 If it has less edges, it cannot be connected.

 If it has more edges, it must contain a cycle.

Algorithm:

 Run BFS/DFS to find all the connected components of 𝐺.

 For each connected component, count the number of edges.

 If # edges ≥ # vertices, return “cycle detected”.

Running time: Θ(𝑉 + 𝐸)

Q: What if we also want to find a cycle (any is OK) if it exists?
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Tree edges, back edges, and cross edges

After we have run BFS or DFS on an undirected graph, the edges can 

be classified into 3 types:

 Tree edges: traversed by the BFS/DFS.

 Back edges: connecting a node with one of its ancestors in the 

BFS/DFS-tree except its parent.

 Cross edges: connecting two nodes with no ancestor/descendent 

relationship.

Theorem: In a DFS on an undirected graph, there are no cross edges.

Pf: Consider any edge (𝑢, 𝑣) in 𝐺.

 Without loss of generality, assume 𝑢 is discovered before 𝑣.

 Then 𝑣 is discovered while 𝑢 is gray (why?).

 Hence 𝑣 is in the DFS subtree rooted at u.

– If 𝑣. 𝑝 = 𝑢, then (𝑢, 𝑣) is a tree edge.

– If 𝑣. 𝑝 ≠ 𝑢, then (𝑢, 𝑣) is a back edge.

Theorem: In a BFS on an undirected graph, there are no back edges.
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DFS for cycle detection

Idea: Run DFS on each connected component of 𝐺.

 If there is a back edge (𝑢, 𝑣). Then, 𝑣 is an ancestor (but not 

parent) of 𝑢 in the DFS trees. There is thus a path from 𝑣 to 𝑢 in 

the DFS-tree , and the back edge (𝑢, 𝑣) completes a cycle.

 If there is no back edge, then there are only tree edges, so the 

graph is a forest, and hence is acyclic.
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DFS for cycle detection

Running time: Θ(𝑉)

 Only traverse DFS-tree 

edges, until the first non-

tree edge is found

 At most 𝑉 − 1 tree edges
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CycleDetection(𝐺):
for each vertex 𝑢 ∈ 𝑉 do

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒
𝑢. 𝑝 ← 𝑛𝑖𝑙

for each vertex 𝑢 ∈ 𝑉 do

if 𝑢. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then DFS-Visit(𝑢)
return “No cycle”

DFS-Visit(𝑢):
𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑔𝑟𝑎𝑦
for each 𝑣 ∈ 𝐴𝑑𝑗 𝑢 do

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then

𝑣. 𝑝 ← 𝑢
DFS-Visit(𝑣)

else if 𝑣 ≠ 𝑢. 𝑝 then

output “Cycle found:"

while 𝑢 ≠ 𝑣 do 

output 𝑢
𝑢 ← 𝑢. 𝑝

output 𝑣
return

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘



Directed Acyclic Graphs and Topological Ordering

Def.  A DAG is a directed graph that contains no (directed) cycles.

Def.  A topological order of a directed graph 𝐺 = (𝑉, 𝐸) is an ordering 

of its nodes such that for every edge 𝑢 → 𝑣, 𝑢 is ordered before 𝑣.

Examples of topological orderings: 

 0, 6, 1, 4, 3, 2, 5, 7, 8, 9

 0, 4, 1, 6, 2, 5, 3, 7, 8, 9

 …
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Topological Sort Algorithm

Observations

 Starting vertex must have zero in-

degree

 If such a vertex doesn’t exist, the 

graph would not be acyclic

Algorithm

 A vertex with zero in-degree can be 

output right away.

 If a vertex 𝑢 is output, then all the 

edges (𝑢, 𝑣) are no longer useful, 

since 𝑣 does not need to wait for 𝑢

anymore

– Can remove all the edges (𝑢, 𝑣)

 With vertex 𝑢 removed, the new 

graph is still a DAG

– Repeat step until no vertex is left
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TopologicalSort(𝐺):
compute 𝑑𝑒𝑔𝑖𝑛(𝑢) for all 𝑢
let 𝑄 be an empty queue

for each 𝑢 ∈ 𝑉 do

if 𝑑𝑒𝑔𝑖𝑛 𝑢 = 0 then

Enqueue(𝑄, 𝑢)
while 𝑄 ≠ ∅ do

𝑢 ← Dequeue(𝑄)
output 𝑢
for each 𝑣 ∈ 𝐴𝑑𝑗(𝑢) do

𝑑𝑒𝑔𝑖𝑛 𝑣 ← 𝑑𝑒𝑔𝑖𝑛 𝑣 − 1
if 𝑑𝑒𝑔𝑖𝑛 𝑣 = 0 then

Enqueue(𝑄, 𝑣)

Running time: Θ(𝑉 + 𝐸)


