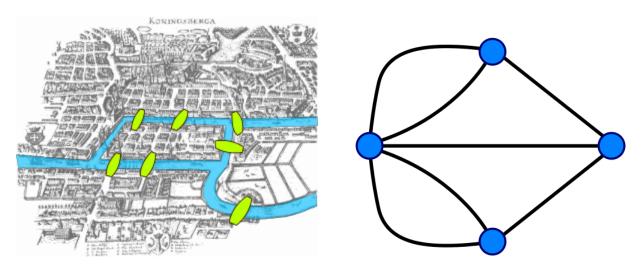
Lecture 14: Introduction to Graphs

The Seven Bridges of Königsberg

Q: Can you find a path to cross all seven bridges, each exactly once?



Q: (Reformulated as a graph problem) Can you find a path in the graph that includes every edge exactly once?

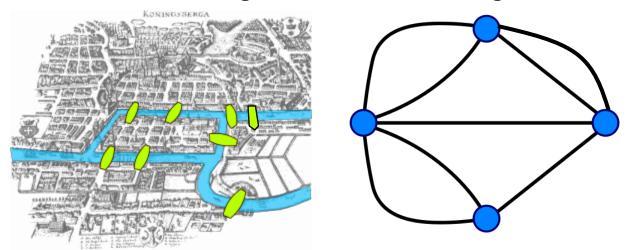
A: Not possible.

Theorem: A graph has such a path (known as an Euler path) iff there are 0 or 2 vertices with an odd degree.

Q: Can a graph have exactly one vertex with an odd degree?

The Seven Bridges of Königsberg

Solution: Build one more bridge to remove 2 odd-degree vertices.



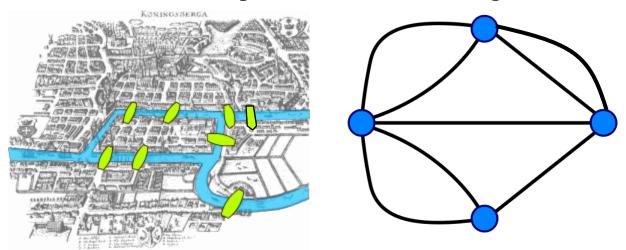
Algorithm:

```
u \leftarrow \text{any odd-degree vertex} if no such vertex exists u \leftarrow \text{any vertex} while u has an edge not taken yet take that edge (u,v) u \leftarrow v
```

But, this algorithm may get stuck...

The Seven Bridges of Königsberg

Solution: Build one more bridge to remove 2 odd-degree vertices.



Algorithm:

```
while there are still edges not taken yet u \leftarrow \text{any odd-degree vertex} if no such vertex exists u \leftarrow \text{any vertex} p \leftarrow \text{Find-Path}(u) insert p into existing path at u
\frac{\text{Find-Path}(u):}{\text{while } u \text{ has an edge not taken yet}} take that edge (u,v) u \leftarrow v
```

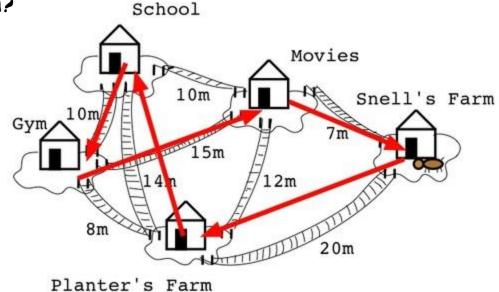
Graph Applications

Graph	Nodes	Edges	
transportation	street intersections	highways	
communication	computers	fiber optic cables	
World Wide Web	web pages	hyperlinks	
social	people	relationships	
food web	species	predator-prey	
software systems	functions	function calls	
scheduling	tasks	precedence constraints	
circuits	gates	wires	

The Traveling Salesman Problem

Q: How to visit all places with the shortest total distance, and come back to origin?

School



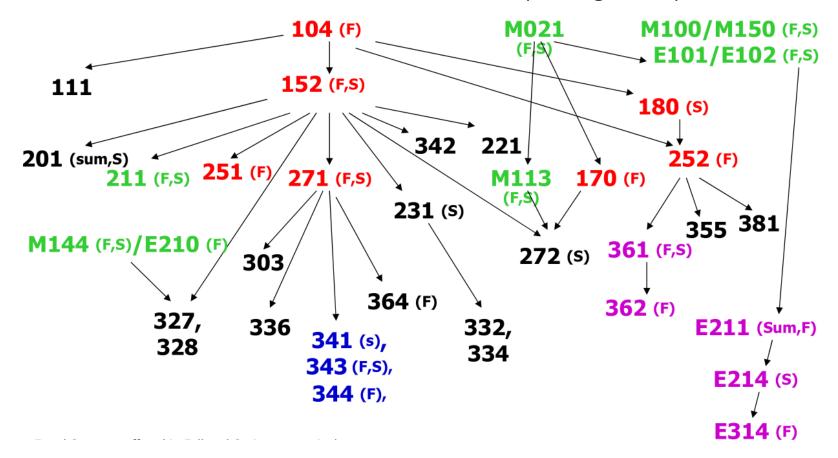
Q: (Reformulated as a graph problem) Given a graph where edges have weights (lengths), how to find a cycle with minimum total weight that includes all vertices?

A: Don't know.

- Don't have an algorithm that runs in polynomial time. (Conjecture is that such an algorithm doesn't exist.)
- This is actually equivalent to the P = NP problem (still open).

Course Dependency Chart

Q: Find an order to take all courses, while respecting all dependencies?



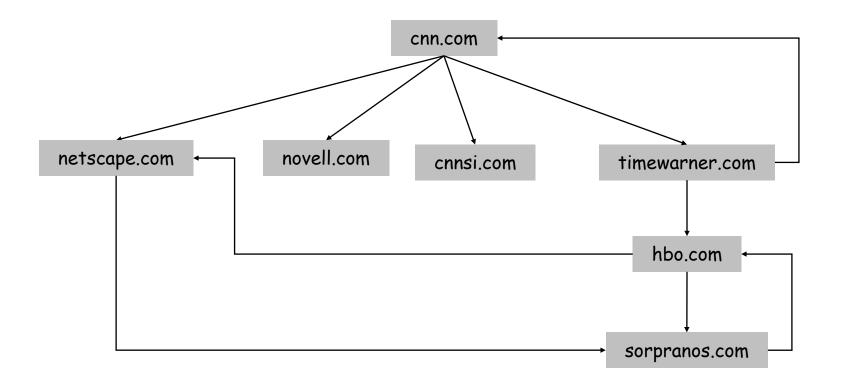
Q: (Reformulated as a graph problem) Given a directed graph, find an ordering of the vertices such that for any edge $u \rightarrow v$, u is ordered before v, or declare that there is a cycle in the graph.

World Wide Web

Web graph.

Node: web page.

• Edge: hyperlink from one page to another (directed).



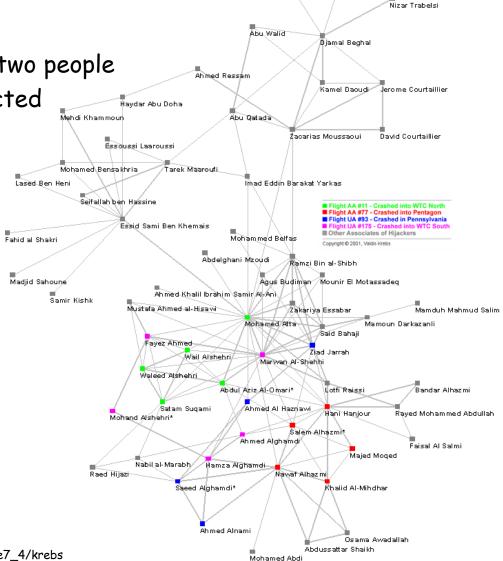
Social Networks

Social network graph.

Nodes: people.

• Edges: relationship between two people

- Can be directed or undirected



Ābu Zubeida

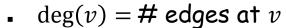
Jean-Marc Grandvisir

Undirected and Directed Graphs

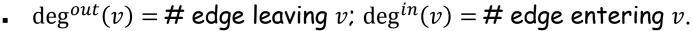
Graph. G = (V, E)

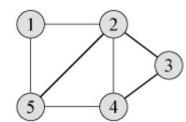
- V: set of nodes (vertices).
- E: set of edges between pairs of nodes.
- Abusing notation, we also use V and E to denote the number of nodes and edges. We sometimes also use n = |V|, m = |E|.

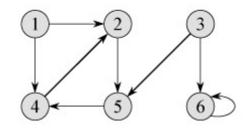
Undirected graph.



- Edges have directions
- If an edge has both directions, we will use two edges with opposite directions







Exercises

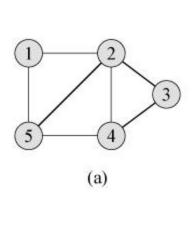
Q: Can an undirected graph have exactly one vertex with an odd degree?

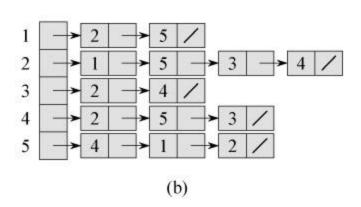
A: No, since $\sum_{v \in V} \deg(v) = 2E$, which is an even number.

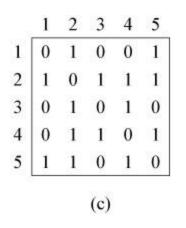
Q: [Handshaking lemma] Suppose that the guests in a party shake hands with each other arbitrarily. Show that, no matter how they shake hands, the number of guests who shake hands an odd number of times must be even.

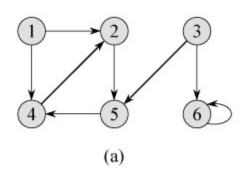
A: Model each guest as a node, a handshake as an edge. This is an undirected graph, so $\sum_{v \in V} \deg(v)$ is even. If an odd number of people shake an odd number of times, then the total degree would be

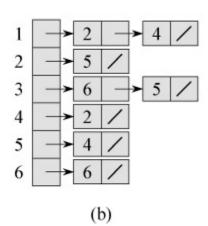
Graph Representation: Adjacency List and Adjacency Matrix











	-	2	3	4	5	6
1	0	1	0	1 0 0 0 1	0	0 0 1 0 0
2	0	0	0	0	1	0
1 2 3 4	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Graph Representation: Adjacency List and Adjacency Matrix

Adjacency list.

- A node-indexed array of lists.
- Given node u, retrieving all neighbors in $\Theta(\deg(u))$ time
- Given u, v, checking if (u, v) is an edge takes $\Theta(\deg(u))$ time.
- Space: $\Theta(V+E)$.

Adjacency matrix.

- $AV \times V$ matrix.
- Given node u, retrieving all neighbors in $\Theta(V)$ time
- Given u, v, checking if (u, v) is an edge takes O(1) time.
- Space: $\Theta(V^2)$.

Note:

- Adjacency list is used more often, since most graphs are sparse.
- Usually, assume no self-loops and duplicated edges.
 - Thus, for undirected graphs, $0 \le E \le V(V-1)/2$
 - For directed graphs, $0 \le E \le V(V-1)$
- Can convert from one to the other in $\Theta(V^2)$ time.

Q: How to represent weights?

Paths and Connectivity

Def. A path in a (directed or undirected) graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ such that (v_i, v_{i+1}) is an edge. The length of the path is k-1 (i.e., # edges in the path).

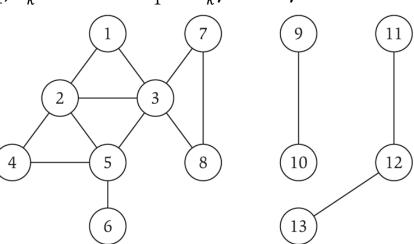
Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Theorem: For a connected graph, $E \ge V - 1$.

Def. A cycle is a path $v_1, v_2, \dots, v_{k-1}, v_k$ in which $v_1 = v_k, k > 2$, and the

first k-1 nodes are all distinct.



Exercise

Q: Suppose in a wireless network of n mobile devices, each device is within communication range with at least n/2 other devices (assuming n is an even number). Show that all devices are connected.

Reformulated as a graph problem: Let G be an undirected graph where each node has degree $\geq n/2$. Show that G is connected.

Pf: Consider any two nodes u and v in G. There are two cases:

- If there is an edge (u, v), then u and v are connected.
- If there is no direct edge between u and v, then they must have a common neighbor, say w, because
 - There are n-2 nodes other than u and v.
 - u and v each have $\geq n/2$ neighbors among these nodes.
- lacksquare Thus there is a path between u and v.
- The above argument holds for any two nodes u,v, so the graph ${\it G}$ is connected.

Q: If the threshold n/2 is changed to n/2-1, does the claim still hold?

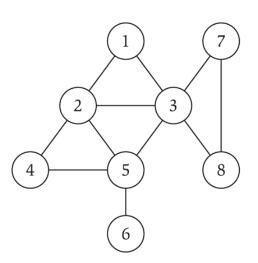
Connectivity and Shortest Path

s-t connectivity problem. Given two nodes s and t, is there a path from s to t?

s-t shortest path problem. Given two node s and t, what is the shortest path from s to t?

Def: The length of the path (in terms of number of edges) is the distance from s to t.

The problem can be defined on either an undirected or directed graph.



Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

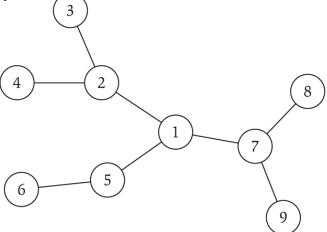
Def. An undirected graph is a forest if it does not contain a cycle (i.e., a collection of trees).

Theorem (simpler version of Theorem B.4 in textbook):

Let G be an undirected graph. Any two of the following statements imply the third (hence G is a tree).

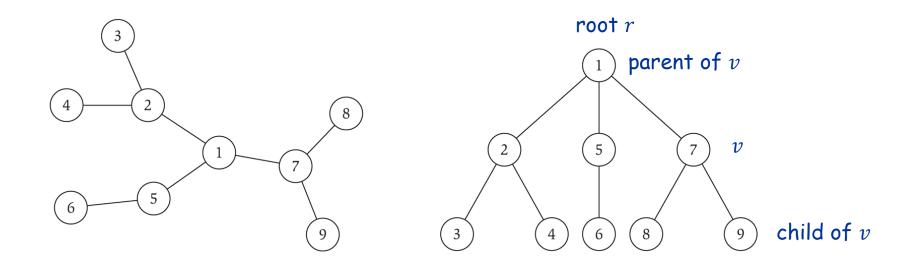
- (1) G is connected.
- (2) G does not contain a cycle.
- (3) E = V 1.

Proof: (Omitted)



Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.



a tree

the same tree, rooted at 1