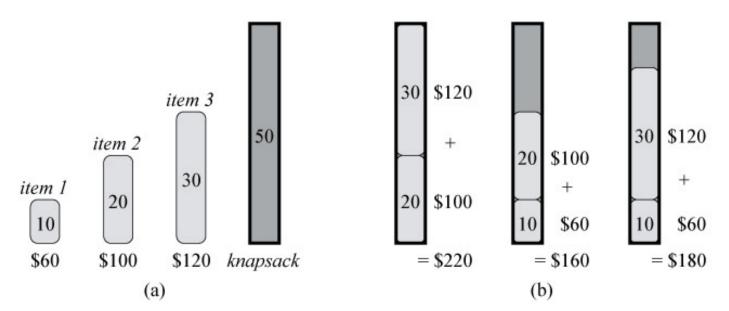
Lecture 12: 2D Dynamic Programming

The 0/1 Knapsack Problem



Input: A set of n items, where item i has weight w_i and value v_i , and a knapsack with capacity W.

Goal: Find $x_1, ..., x_n \in \{0,1\}$ such that $\sum_{i=1}^n x_i w_i \leq W$ and $\sum_{i=1}^n x_i v_i$ is maximized.

Recall: Greedy doesn't work

The Recurrence

Definition: Let V[j] be the largest obtainable value for a knapsack with capacity j.

Recurrence:

$$V[j] = \max(0, v_1 + V[j - w_1], v_2 + V[j - w_2], \dots, v_n + V[j - w_n])$$

$$V[j] = 0, j \le 0$$

This is wrong, since it may pick the same item more than once!

New definition: Let V[i,j] be the largest obtained value for a knapsack with capacity j, only choosing from the first i items.

Recurrence:

$$V[i,j] = \max(V[i-1,j], v_i + V[i-1,j-w_i])$$

$$V[i,j] = 0, i = 0 \text{ or } j = 0$$

The Algorithm

```
let V[0..n,0..W] be a new array of all 0
for i \leftarrow 1 to n do
     for j \leftarrow 1 to W do
           if w[i] \le j and v[i] + V[i-1, j-w[i]] > V[i-1, j] then
                V[i,j] \leftarrow v[i] + V[i-1,j-w[i]]
           else
                V[i,j] \leftarrow V[i-1,j]
return V[n, W]
```

90 90

Running time: $\Theta(nW)$								i	1	2	3	4
Space: $\Theta(nW)$, but can be								v_i	10	40	30	50
improved to $\Theta(n+W)$								w_i	5	4	6	3
	V[i,j]	0	1	2	3	4	5	6	7	8	9	10
	i = 0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	10	10	10	10	10	10
	2	0	0	0	0	40	40	40	40	40	50	50
	3	0	0	0	0	40	40	40	40	40	50	70
	_		_	_								

0 0 50 50 50 50 90

Reconstructing the Solution

Idea: Remember the optimal decision for each subproblem.

```
let V[0..n,0..W] and keep[0..n,0..W] be a new array of all 0
for i \leftarrow 1 to n do
      for i \leftarrow 1 to W do
            if w[i] \le j and v[i] + V[i-1, j-w[i]] > V[i-1, j] then
                  V[i,j] \leftarrow v[i] + V[i-1,j-w[i]]
                  keep[i,i] \leftarrow 1
            else
                  V[i, i] \leftarrow V[i-1, i]
                  keep[i,j] \leftarrow 0
K \leftarrow W
for i \leftarrow n downto 1 do
      if keep[i,K] = 1 then
           print i
           K \leftarrow K - w[i]
```

Running time: $\Theta(nW)$

Space: $\Theta(nW)$, cannot be improved to $\Theta(n+W)$ due to the keep array.

Longest Common Subsequence

Problem: Given two sequences $X=(x_1,x_2,...,x_m)$ and $Y=(y_1,y_2,...,y_n)$, we say that Z is a common subsequence of X and Y if Z has a strictly increasing sequence of indices i and j of both X and Y such that we have $x_{i_p}=y_{j_p}=z_p$ for all p=1,2,...,k. The goal is to find the longest common subsequence of X and Y.

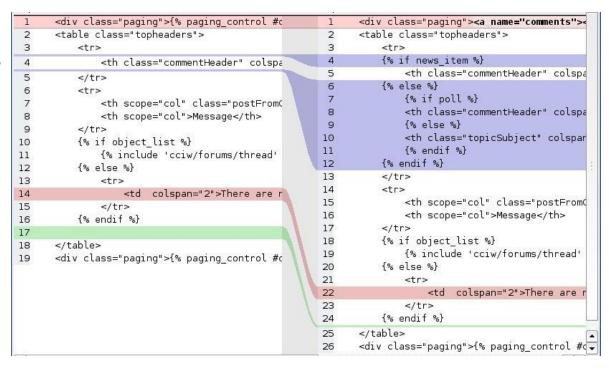
Ex:

 $X: \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{C} \mathbf{B} \mathbf{D} \mathbf{A} \mathbf{B}$

Y: BDCABA

Z: B C B A

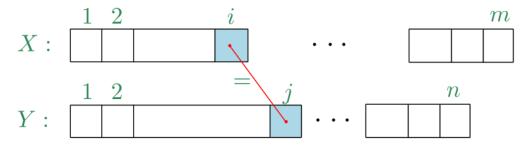
Application: diff



The Recurrence

Def: Let c[i,j] to be the length of the longest common subsequence of X[1..i] and Y[1..j].

Observations: The problem is equivalent to finding the maximum matching between X and Y such that matched pairs don't cross.



The recurrence:

- Case 1: If $x_i = y_j$, then we match x_i and y_j . By doing so, we will not miss the optimal solution. (If OPT doesn't match them, we can change it so that they are matched.)
- Case 2: If $x_i \neq y_j$, then either x_i or y_j is not matched. So the problem reduces to either c[i-1,j] or c[i,j-1].

The Recurrence and Algorithm

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i,j-1], c[i-1,j]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

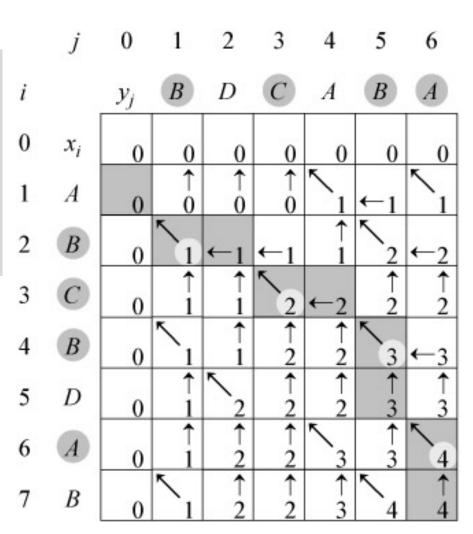
```
let c[0..m,0..n] and b[0..m,0..n] be new arrays of all 0 for i\leftarrow 1 to m for j\leftarrow 1 to n if x_i=y_j then c[i,j]\leftarrow c[i-1,j-1]+1 b[i,j]\leftarrow " \wedge " else if c[i-1,j]\geq c[i,j-1] then c[i,j]\leftarrow c[i-1,j] b[i,j]\leftarrow " \uparrow " else c[i,j]\leftarrow c[i,j-1] b[i,j]\leftarrow " \leftarrow " Print-LCS (b,m,n)
```

Running time: $\Theta(mn)$

Space: $\Theta(mn)$, can be improved to $\Theta(m+n)$ if we only need to return the optimal length.

Reconstruct the Optimal Solution

```
\frac{\texttt{Print-LCS}(b,i,j):}{\texttt{if } i=0 \texttt{ or } j=0 \texttt{ then return}} \texttt{if } b[i,j] = \texttt{"} \land \texttt{" then} \texttt{Print-LCS}(b,i-1,j-1) \texttt{print } x_i \texttt{else if } b[i,j] = \texttt{"} \uparrow \texttt{"} \texttt{Print-LCS}(b,i-1,j) \texttt{else Print-LCS}(b,i,j-1)
```



Longest Common Substring

Problem: Given two strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$, we wish to find their longest common substring Z, that is, the largest k for which there are indices i and j with $x_i x_{i+1} \dots x_{i+k-1} = y_j y_{j+1} \dots y_{j+k-1}$.

Ex:

X: DEADBEEF

Y: EATBEEF

Z: BEEF //pick the longest contiguous substring

Note: Brute-force algorithm takes $O(n^4)$ time.

The Recurrence

Def: d[i,j] = the length of the longest common substring of X[1..i] and Y[1..j]. (Does this work?)

Def: d[i,j] = the length of the longest common substring of X[1..i] and Y[1..j] that ends at x_i and y_j .

Q: Wait, are we changing the problem?

A: Yes, but it's OK. The optimal solution to the original is just $\max\{d[i,j]\}$

Recurrence:

- If $x_i = y_j$, then the LCS of X[1..i] and Y[1..j] is just the LCS of X[1..i-1] and Y[1..j-1], plus $x_i = y_j$
- If $x_i \neq y_i$, then there can't be a common substring ending at x_i and y_i !

$$d[i,j] = \begin{cases} d[i-1,j-1] + 1 & \text{if } x_i = y_j \\ 0 & \text{if } x_i \neq y_j \end{cases}$$

The Algorithm

```
let d[0..m,0..n] be a new array of all 0 l_m \leftarrow 0, p_m \leftarrow 0 for i \leftarrow 1 to m for j \leftarrow 1 to n if x_i = y_j then d[i,j] \leftarrow d[i-1,j-1] + 1 if d[i,j] > l_m then l_m \leftarrow d[i,j] p_m \leftarrow i for i \leftarrow p_m - l_m + 1 to p_m print x_i
```

Note: For this problem, reconstructing the optimal solution just needs the location of the LCS.

Running time: $\Theta(mn)$

Space: $\Theta(mn)$ but can be improved to $\Theta(m+n)$.