
Lecture 12: 2D Dynamic Programming



The 0/1 Knapsack Problem

Input: A set of 𝑛 items, where item 𝑖 has weight 𝑤𝑖 and value 𝑣𝑖, and a 

knapsack with capacity 𝑊.

Goal: Find 𝑥1, … , 𝑥𝑛 ∈ {0,1} such that  𝑖=1
𝑛 𝑥𝑖𝑤𝑖 ≤ 𝑊 and  𝑖=1

𝑛 𝑥𝑖𝑣𝑖 is 

maximized.

Recall: Greedy doesn’t work
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The Recurrence

Definition: Let 𝑉[𝑗] be the largest obtainable value for a knapsack with 

capacity 𝑗.

Recurrence: 

𝑉 𝑗 = max(0, 𝑣1 + 𝑉 𝑗 − 𝑤1 , 𝑣2 + 𝑉 𝑗 − 𝑤2 , … , 𝑣𝑛 + 𝑉 𝑗 − 𝑤𝑛 )

𝑉 𝑗 = 0, 𝑗 ≤ 0

This is wrong, since it may pick the same item more than once!

New definition: Let 𝑉[𝑖, 𝑗] be the largest obtained value for a knapsack 

with capacity 𝑗, only choosing from the first 𝑖 items.

Recurrence: 

𝑉 𝑖, 𝑗 = max(𝑉 𝑖 − 1, 𝑗 , 𝑣𝑖 + 𝑉[𝑖 − 1, 𝑗 − 𝑤𝑖])

𝑉 𝑖, 𝑗 = 0, 𝑖 = 0 𝑜𝑟 𝑗 = 0
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The Algorithm

Running time: Θ 𝑛𝑊

Space: Θ(𝑛𝑊), but can be 

improved to Θ(𝑛 +𝑊)
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let 𝑉[0. . 𝑛, 0 . .𝑊] be a new array of all 0
for 𝑖 ← 1 to 𝑛 do

for 𝑗 ← 1 to 𝑊 do

if 𝑤[𝑖] ≤ 𝑗 and 𝑣[𝑖] + 𝑉[𝑖 − 1, 𝑗 − 𝑤[𝑖]] > 𝑉 𝑖 − 1, 𝑗 then

𝑉 𝑖, 𝑗 ← 𝑣[𝑖] + 𝑉[𝑖 − 1, 𝑗 − 𝑤[𝑖]]
else

𝑉 𝑖, 𝑗 ← 𝑉[𝑖 − 1, 𝑗]
return 𝑉[𝑛,𝑊]

𝑉[𝑖, 𝑗] 0 1 2 3 4 5 6 7 8 9 10

𝑖 = 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 50 50

3 0 0 0 0 40 40 40 40 40 50 70

4 0 0 0 50 50 50 50 90 90 90 90

𝑖 1 2 3 4

𝑣𝑖 10 40 30 50

𝑤𝑖 5 4 6 3



Reconstructing the Solution

Idea: Remember the optimal decision for each subproblem.

Running time: Θ 𝑛𝑊

Space: Θ(𝑛𝑊), cannot be improved to Θ(𝑛 +𝑊) due to the 𝑘𝑒𝑒𝑝 array.
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let 𝑉[0. . 𝑛, 0 . .𝑊] and 𝑘𝑒𝑒𝑝 0. . 𝑛, 0. .𝑊 be a new array of all 0
for 𝑖 ← 1 to 𝑛 do

for 𝑗 ← 1 to 𝑊 do

if 𝑤[𝑖] ≤ 𝑗 and 𝑣[𝑖] + 𝑉[𝑖 − 1, 𝑗 − 𝑤[𝑖]] > 𝑉 𝑖 − 1, 𝑗 then

𝑉 𝑖, 𝑗 ← 𝑣 𝑖 + 𝑉 𝑖 − 1, 𝑗 − 𝑤 𝑖
𝑘𝑒𝑒𝑝 𝑖, 𝑗 ← 1

else

𝑉 𝑖, 𝑗 ← 𝑉 𝑖 − 1, 𝑗
𝑘𝑒𝑒𝑝 𝑖, 𝑗 ← 0

𝐾 ← 𝑊
for 𝑖 ← 𝑛 downto 1 do

if 𝑘𝑒𝑒𝑝 𝑖, 𝐾 = 1 then 

print 𝑖
𝐾 ← 𝐾 − 𝑤[𝑖]



Longest Common Subsequence

Problem: Given two sequences 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑚) and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛),

we say that 𝑍 is a common subsequence of 𝑋 and 𝑌 if 𝑍 has a strictly 

increasing sequence of indices 𝑖 and 𝑗 of both 𝑋 and 𝑌 such that we 
have 𝑥𝑖𝑝 = 𝑦𝑗𝑝 = 𝑧𝑝 for all 𝑝 = 1, 2, … , 𝑘. The goal is to find the longest 

common subsequence of 𝑋 and 𝑌.

Ex: 

𝑋: A B A C B D A B

𝑌: B D C A B A

𝑍: B C B A

Application: diff

6



The Recurrence

Def: Let 𝑐[𝑖, 𝑗] to be the length of the longest common subsequence of 

𝑋[1. . 𝑖] and 𝑌[1. . 𝑗].

Observations: The problem is equivalent to finding the maximum 

matching between 𝑋 and 𝑌 such that matched pairs don’t cross.

The recurrence: 

 Case 1: If 𝑥𝑖 = 𝑦𝑗, then we match 𝑥𝑖 and 𝑦𝑗. By doing so, we will not 

miss the optimal solution. (If OPT doesn’t match them, we can 

change it so that they are matched.)

 Case 2: If 𝑥𝑖 ≠ 𝑦𝑗, then either 𝑥𝑖 or 𝑦𝑗 is not matched. So the 

problem reduces to either 𝑐[𝑖 − 1, 𝑗] or 𝑐[𝑖, 𝑗 − 1].
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The Recurrence and Algorithm

𝑐 𝑖, 𝑗 =  

0 if 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1 if 𝑖, 𝑗 > 0 and 𝑥𝑖 = 𝑦𝑗
max{𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗 } if 𝑖, 𝑗 > 0 and 𝑥𝑖 ≠ 𝑦𝑗

Running time: Θ(𝑚𝑛)

Space: Θ(𝑚𝑛), can be improved to Θ(𝑚 + 𝑛) if we only need to return 

the optimal length.
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let 𝑐[0. .𝑚, 0. . 𝑛] and 𝑏[0. .𝑚, 0. . 𝑛] be new arrays of all 0
for 𝑖 ← 1 to 𝑚

for 𝑗 ← 1 to 𝑛

if 𝑥𝑖 = 𝑦𝑗 then

𝑐 𝑖, 𝑗 ← 𝑐[𝑖 − 1, 𝑗 − 1] + 1
𝑏 𝑖, 𝑗 ← " ↖ "

else if 𝑐[𝑖 − 1, 𝑗] ≥ 𝑐[𝑖, 𝑗 − 1] then

𝑐 𝑖, 𝑗 ← 𝑐[𝑖 − 1, 𝑗]
𝑏 𝑖, 𝑗 ← " ↑ "

else

𝑐 𝑖, 𝑗 ← 𝑐[𝑖, 𝑗 − 1]
𝑏 𝑖, 𝑗 ← " ← “

Print-LCS(𝑏,𝑚, 𝑛)



Reconstruct the Optimal Solution
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Print-LCS(𝑏, 𝑖, 𝑗):
if 𝑖 = 0 or 𝑗 = 0 then return

if 𝑏[𝑖, 𝑗] = " ↖ “ then 

Print-LCS(𝑏, 𝑖 − 1, 𝑗 − 1)
print 𝑥𝑖

else if 𝑏[𝑖, 𝑗] = " ↑ "
Print-LCS(𝑏, 𝑖 − 1, 𝑗)

else Print-LCS(𝑏, 𝑖, 𝑗 − 1)



Longest Common Substring

Problem: Given two strings 𝑋 = 𝑥1𝑥2…𝑥𝑚 and 𝑌 = 𝑦1𝑦2…𝑦𝑛, we wish to 

find their longest common substring 𝑍, that is, the largest 𝑘 for which 

there are indices 𝑖 and 𝑗 with 𝑥𝑖𝑥𝑖+1…𝑥𝑖+𝑘−1 = 𝑦𝑗𝑦𝑗+1…𝑦𝑗+𝑘−1.

Ex:

X : DEADBEEF

Y : EATBEEF

Z : BEEF //pick the longest contiguous substring

Note: Brute-force algorithm takes 𝑂(𝑛4) time.
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The Recurrence

Def: 𝑑 𝑖, 𝑗 = the length of the longest common substring of 𝑋[1. . 𝑖] and 

𝑌[1. . 𝑗]. (Does this work?)

Def: 𝑑 𝑖, 𝑗 = the length of the longest common substring of 𝑋[1. . 𝑖] and 

𝑌 1. . 𝑗 that ends at 𝑥𝑖 and 𝑦𝑗.

Q: Wait, are we changing the problem?

A: Yes, but it’s OK. The optimal solution to the original is just max{𝑑 𝑖, 𝑗 }

Recurrence:

 If 𝑥𝑖 = 𝑦𝑗, then the LCS of 𝑋[1. . 𝑖] and 𝑌[1. . 𝑗] is just the LCS of 

𝑋[1. . 𝑖 − 1] and 𝑌 1. . 𝑗 − 1 , plus 𝑥𝑖 = 𝑦𝑗
 If 𝑥𝑖 ≠ 𝑦𝑗, then there can’t be a common substring ending at 𝑥𝑖 and 𝑦𝑗!

𝑑 𝑖, 𝑗 =  
𝑑 𝑖 − 1, 𝑗 − 1 + 1 if 𝑥𝑖 = 𝑦𝑗

0 if 𝑥𝑖 ≠ 𝑦𝑗
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The Algorithm

Note: For this problem, reconstructing the optimal solution just needs 

the location of the LCS.

Running time: Θ(𝑚𝑛)

Space: Θ(𝑚𝑛) but can be improved to Θ(𝑚 + 𝑛).
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let 𝑑[0. . 𝑚, 0. . 𝑛] be a new array of all 0
𝑙𝑚 ← 0, 𝑝𝑚 ← 0
for 𝑖 ← 1 to 𝑚

for 𝑗 ← 1 to 𝑛

if 𝑥𝑖 = 𝑦𝑗 then

𝑑 𝑖, 𝑗 ← 𝑑[𝑖 − 1, 𝑗 − 1] + 1
if 𝑑 𝑖, 𝑗 > 𝑙𝑚 then 

𝑙𝑚 ← 𝑑 𝑖, 𝑗
𝑝𝑚 ← 𝑖

for 𝑖 ← 𝑝𝑚 − 𝑙𝑚 + 1 to 𝑝𝑚
print 𝑥𝑖


