Lecture 12: 2D Dynamic Programming




The 0/1 Knapsack Problem
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Input: A set of n items, where item i has weight w; and value v;, and a
knapsack with capacity W.

Goal: Find x4, ..., x, € {0,1} such that Y>i*, x;w; < W and Yi-, x;v; is
maximized.

Recall: Greedy doesn't work



The Recurrence

Definition: Let V[j] be the largest obtainable value for a knapsack with
capacity j.

Recurrence:
VIl = max(0,vy + V[j —wil, vy + VIj —wal, .., v + V[ —wy])
Vlj]1=0,j<0

This is wrong, since it may pick the same item more than oncel

New definition: Let V[i, j] be the largest obtained value for a knapsack
with capacity j, only choosing from the first i items.

Recurrence:
V0i,jl = max(V[i — 1,jl,v; + V[i — 1,j — w;])
V0i,jl=0,i=00rj=0



let V[0..n,0..W] be a new array of all 0

for i< 1 to n do

for j«<1 to W do

The Algorithm

if wli]<j and v[i]+V[i—1,j —w[i]] >V[i—1,j] then

VIi,jl «v[i]+V[i—1,j —wl[i]]

else

VIi,jl < V[i = 1,j]

return V[n, W]

Running time: 8(nW)
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Reconstructing the Solution

Idea: Remember the optimal decision for each subproblem.

let V[0..n,0..W] and keep[0..n,0..W] be a new array of all 0
for i<1 to n do
for j«<1 to W do
if wli]<j and v[i]+V[i—1,j—wl[i]] >VI[i—1,j] then
VIi,jl « v[il + V][i—1,j — wli]]
keepli,j] < 1
else
Vi, jl < V[i—1,/]
keepli,jl < 0
K<W
for i «n downto 1 do
if keepli,K] =1 then
print i
K « K —w[i]

Running time: 8(nW)

Space: O(nW), cannot be improved to ©(n + W) due to the keep array.



Longest Common Subsequence

Problem: Given two sequences X = (x1, %3, ..., X;n) and Y = (¥4, Y2, -, Vn).
we say that Z is a common subsequence of X and Y if Z has a strictly

increasing sequence of indices i and j of both X and Y such that we
have Xi, = Yj, = Zp forallp =1,2,...,k. The goal is to find the longest

common subsequence of X and Y.

Ex:

XA BAC
Y. BDCARB
Z. B C B

Application: diff
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<table class="topheaders"=>
<tr=>
<th class="commentHeader" colspz
</tr>
<tr>
<th scope="col" class="postFromc
<th scope="col">Message</th>
</tr>
{% 1f object_list %}
{% include 'cciw/forums/thread’
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{% endif %}
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<div class="paging"><a name='"'comments'><

<table class="topheaders"=
<tr=>
{% if news_item %}
<th class="commentHeader" colspz
{% else %}
{% 1f poll %}
<th class="commentHeader" colspz
{% else %}
<th class="topicSubject" colspar
{% endif %}
{% endif %}
</tr>
<tr=>
<th scope="col" class="postFromd
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</tr>
{% 1f object_list %}
{% include 'cciw/forums/thread’
{% else %}
<tr=>
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</table>
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The Recurrence

Def: Let c[i,j] to be the length of the longest common subsequence of
X[1..i] and Y[1..j].

Observations: The problem is equivalent to finding the maximum
matching between X and Y such that matched pairs don't cross.
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The recurrence:
Case 1: If x; = y;, then we match x; and y;. By doing so, we will not
miss the optimal solution. (If OPT doesn't match them, we can
change it so that they are matched.)
Case 2: If x; # y;, then either x; or y; is not matched. So the
problem reduces to either c[i — 1, ] or c[i,j — 1].



The Recurrence and Algorithm

0 ifi=00rj=0
ci,j] = cli—1,j—1]+1 ifi,j > 0and x; = y;
max{c|i,j — 1],c[i — 1,j]} ifi,j > 0and x; # y;

let ¢[0..m,0..n] and b[0..m,0..n] be new arrays of all 0
for i< 1 tom
for j<1 ton
if x; =y; then
cli,jlecli—1,j—1]+1
bli,jl<"~N"
else if c[i—1,j] = c[i,j — 1] then
C[l,]] (_ C[l — 1']]
bli,jl<"1T"
else
cli,jl « cli,j —1]
bli,j] < " "
Print-LCS (b, m,n)

Running time: ©(mn)

Space: @(mn), can be improved to O(m + n) if we only need to return
the optimal length.



Reconstruct the Optimal Solution

Print-LCS (b,i,j) :

if i=0 or j=0 then return

if b[i,j]="N" then
Print-LCS (b,i—1,j — 1)
print x;

else if Db[i,j]="T"

Print-LCS (b,i — 1,))
else Print-LCS(b,i,j — 1)
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Longest Common Substring

Problem: Given two strings X = x1x, ...x;, and Y = y;y, ...y, we wish to
find their longest common substring Z, that is, the largest k for which
there are indices i and j with x;x;41 ... Xitg—1 = VjVjt1 - Vitk-1-

Ex:

X | DEADBEEF

Y . EATBEEF
Z . BEEF //pick the longest contiguous substring

Note: Brute-force algorithm takes 0(n*) time.
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The Recurrence
Def: d[i,j] = the length of the longest common substring of X[1..i] and
Y[1..j]. (Does this work?)

Def: d[i,j] = the length of the longest common substring of X[1..i] and
Y[1..j] that ends at x; and y;.

Q: Wait, are we changing the problem?
A: Yes, but it's OK. The optimal solution to the original is just max{d[i, ]}

Recurrence:
If x; = y;, then the LCS of X[1..i] and Y[1..j] is just the LCS of
X[1..i—1] and Y[1..j — 1], plus x; = y;
Lf x; # y;, then there can't be a common substring ending at x; and y;!
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The Algorithm

let d[0..m,0..n] be a new array of all 0
l,, < 0,p,, <0
for i<1 tom
for j«<1 ton
if xi=yj then
dli,jl < d[i—1,j—1] +1
if d[i,j] > l,, then
Pm < 1
for i<p,—l,+1 to p,
print x;

Note: For this problem, reconstructing the optimal solution just needs
the location of the LCS.

Running time: ©(mn)

Space: 0(mn) but can be improved to O(m + n).
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