
Lecture 11: Dynamic Programming

First Example: Stairs Climbing

2

Problem: Suppose you can take 1 or 2 stairs with one step. How many

different ways can you climb 𝑛 stairs?

Solution: Let 𝑓(𝑛) be the number of different ways to climb 𝑛 stairs.

𝑓 1 = 1, 𝑓 2 = 2, 𝑓 3 = 3,…

𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2)

Q: How to compute 𝑓 𝑛 ?

Solving the recurrence by recursion

3

Running time?

Between 2𝑛/2 and 2𝑛.

A more complicated analysis yields Θ(𝜑𝑛) where 𝜑 ≈ 1.618 is the

golden ratio.

Q: Why so slow?

A: Solving the same subproblem many many times.

𝑓 1 = 1, 𝑓 2 = 2, 𝑓 3 = 3,…

𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2)

F(𝑛):
if 𝑛 = 1 return 1
if 𝑛 = 2 return 2

return F(𝑛 − 1)+F(𝑛 − 2)

𝐹(𝑛)

𝐹(𝑛 − 2)𝐹(𝑛 − 1)

𝐹(𝑛 − 4)𝐹(𝑛 − 3)𝐹(𝑛 − 2) 𝐹(𝑛 − 3)

… 𝑛

Solving the recurrence by recursion

4

Running time: Θ 𝑛

Space: Θ 𝑛 but can be improved

to Θ 1 by freeing array entries

that are no longer needed.

𝑓 1 = 1, 𝑓 2 = 2, 𝑓 3 = 3,…

𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓(𝑛 − 2)

F(𝑛):
allocate an array 𝐴 of size 𝑛
𝐴 1 ← 1
𝐴 2 ← 2
for 𝑖 = 3 to 𝑛

𝐴 𝑖 ← 𝐴 𝑖 − 1 + 𝐴[𝑖 − 2]
return 𝐴[𝑛]

Dynamic programming:

 Used to solve recurrences

 Avoid solving a subproblem more

than once by memorization

 Can be either top-down or

bottom-up

– Bottom-up is usually more

efficient in practice

 “Programming” here means

“planning”, not coding!

The Rod Cutting Problem

Problem: Given a rod of length 𝑛 and prices 𝑝𝑖 for 𝑖 = 1,… , 𝑛, where 𝑝𝑖 is

the price of a rod of length 𝑖. Find a way to cut the rod to maximize

total revenue.

5

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30



Rod Cutting: The Algorithm

Define: Let 𝑟𝑛 be the maximum revenue obtainable from cutting a rod of

length 𝑛.

Recurrence: 𝑟𝑛 = max{𝑝𝑛, 𝑝1 + 𝑟𝑛−1, 𝑝2 + 𝑟𝑛−2, … , 𝑝𝑛−1 + 𝑟1} , 𝑟0 = 0

 𝑝𝑛 if we do not cut at all

 𝑝1 + 𝑟𝑛−1 if the first piece has length 1

 𝑝2 + 𝑟𝑛−2 if the first piece has length 2

 …

6

let 𝑟[0 . . 𝑛] be a new array

𝑟 0 ← 0
for 𝑗 ← 1 to 𝑛

𝑞 ← −∞
for 𝑖 ← 1 to 𝑗

𝑞 ← max(𝑞, 𝑝[𝑖] + 𝑟[𝑗 − 𝑖])
𝑟 𝑗 ← 𝑞

return 𝑟[𝑛]

Running time: Θ(𝑛2)

Reconstructing the Solution

Idea: Remember the optimal decision for each subproblem.

7

let 𝑟[0 . . 𝑛] and 𝑠[0 . . 𝑛] be new arrays

𝑟 0 ← 0
for 𝑗 ← 1 to 𝑛

𝑞 ← −∞
for 𝑖 ← 1 to 𝑗

if 𝑞 < 𝑝[𝑖] + 𝑟[𝑗 − 𝑖] then

𝑞 ← 𝑝[𝑖] + 𝑟[𝑗 − 𝑖]
𝑠 𝑗 ← 𝑖

𝑟 𝑗 ← 𝑞
𝑗 = 𝑛
while 𝑗 > 0 do

print 𝑠[𝑗]
𝑗 ← 𝑗 − 𝑠[𝑗]

𝑖 0 1 2 3 4 5 6 7 8 9 10

𝑝[𝑖] 0 1 5 8 9 10 17 17 20 24 30

𝑟[𝑖] 0 1 5 8 10 13 17 18 22 25 30

𝑠[𝑖] 0 1 2 3 2 2 6 1 2 3 10

8

Weighted Interval Scheduling

Weighted interval scheduling problem.

 Job 𝑗 starts at 𝑠𝑗, finishes at 𝑓𝑗, and has weight (or value) 𝑣𝑗.

 Two jobs compatible if they don't overlap.

 Goal: find maximum-weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

9

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

 Consider jobs in ascending order of finish time.

 Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail miserably if arbitrary weights

are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

10

Weighted Interval Scheduling

Notation. Label jobs by finishing time: 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛.

Def. 𝑝(𝑗) = largest index 𝑖 < 𝑗 such that job 𝑖 is compatible with 𝑗.

Ex: 𝑝(8) = 5, 𝑝(7) = 3, 𝑝(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Q: How to compute 𝑝(𝑗)?

A: Sort jobs by finish time, and

then do binary search with 𝑠𝑗 in

𝑂(log 𝑛) time.

11

The Recurrence

Def. 𝑉 𝑗 = value of optimal solution to the problem on jobs 1, 2, … , 𝑗.

Recurrence:

 Case 1: OPT selects job 𝑗.

– can't use incompatible jobs {𝑝(𝑗) + 1, 𝑝(𝑗) + 2,… , 𝑗 − 1}

– must include optimal solution to problem on jobs 1, 2, … , 𝑝(𝑗)

 Case 2: OPT does not select job 𝑗.

– must include optimal solution to problem on jobs 1, 2, … , 𝑗 − 1

𝑉 𝑗 = max{𝑣𝑗 + 𝑉 𝑝 𝑗 , 𝑉[𝑗 − 1]}

𝑉 0 = 0

Running time: Θ(𝑛 log 𝑛), Space: Θ(𝑛)

sort all jobs by finish time

𝑉 0 ← 0
for 𝑗 ← 1 to 𝑛

𝑉 𝑗 ← max{𝑣𝑗 + 𝑉[𝑝(𝑗)], 𝑉[𝑗 − 1]}
return 𝑉[𝑛]

12

The complete algorithm

sort all jobs by finish time

𝑉 0 ← 0
for 𝑗 ← 1 to 𝑛

if 𝑣𝑗 + 𝑉 𝑝 𝑗 > 𝑉[𝑗 − 1] then

𝑉 𝑗 ← 𝑣𝑗 + 𝑉 𝑝 𝑗
𝑘𝑒𝑒𝑝 𝑗 ← 1

else

𝑉 𝑗 ← 𝑉 𝑗 − 1
𝑘𝑒𝑒𝑝 𝑗 ← 0

𝑗 ← 𝑛
while 𝑗 > 0 do

if 𝑘𝑒𝑒𝑝 𝑗 = 1 then

print 𝑗
𝑗 ← 𝑝(𝑗)

else

𝑗 ← 𝑗 − 1

Running time: Θ(𝑛 log 𝑛)

Dynamic Programming: Summary

Structure: Analyze structure of an optimal solution, and thereby

choose a definition of subproblems.

Recurrence: Establish the relationship between the optimal value of the

problem and those of some subproblems (optimal substructure).

Bottom-up computation: Compute the optimal values of the smallest

subproblems first, save them in the table. Then compute optimal values

of larger subproblems, and so on, until the optimal value of the original

problem is computed.

Construction of optimal solution: Record the optimal decisions made for

each subproblem. At the end, assemble the optimal solution by tracing

the back computation in the previous step.

Remark: The first two steps are interdependent. And they are the

most important steps. The last two steps are usually straightforward.

13

