Lecture 10: Huffman Coding

Encoding

a b c d e f

Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101

Variable-length codeword 0 101 100 111 1101 1100

Encoding: Replace characters by corresponding codewords.
Q: How to design a code to minimize the length of the encoded message?

Ex: For a file with 100,000 characters with distribution in the table
above, the fixed-length code requires

3-100,000 = 300,000 bits
The variable-length code requires

(45-14+13-34+12-34+16-34+9-4+5-4)-1000 = 224,000 bits

Decoding

Decoding: Replace codewords by corresponding characters.

C,={a =00, b =01, ¢ =10, d = 11}.
C,={a =0, b =110, ¢ = 10, d = 111}.
C;={a=1, b =110, ¢ = 10, d = 111}

A message is uniquely decodable if it can only be decoded in one way.

Ex:
Relative to C;, 010011 is uniquely decodable o bad.
Relative to C,, 1100111 is uniquely decodable to bad.
But, relative to € 3 ,1101111 is not uniquely decipherable since
it could have encoded to either bad or acad.

In fact, one can show that every message encoded using C; or C, is
uniquely decodable.

C,: Because it is a fixed-length code.

C,: Because it is a prefix-free code.

Prefix Codes
Def: A code is called a prefix (free) code if no codeword is a prefix of
another one.

Theorem: Every message encoded by a prefix free code is uniquely
decodable.

Pf: Since no codeword is a prefix of any other, we can always find the
first codeword in a message, peel it of f, and continue decoding.

Ex: code:{a = 0, b = 110, ¢ = 10, d = 111}
01101100 = 01101100 = abba
Note: There are other kinds of codes that are also uniquely decocable.

Theorem (proof omitted): The best prefix code can achieve the optimal
data compression among any code that is uniquely decodable.

Q: How to find the prefix code that results in the smallest encoded
message for a given file?

Correspondence between Binary Trees and Prefix Codes

a:45| [b:13| |c:12] [:16] | e:9] | £:5 |

(a) (b)
Left edge is labeled O; right edge is labeled 1.

The binary string on a path from the root to a leaf is the codeword
associated with the character at the leaf.

The depth of a leaf is equal to the length of the codeword.

Problem Restated

Problem definition: Given an alphabet A of n characters ay, ..., a, with
weights f(a;), ..., f(a,), find a binary tree T with n leaves labeled
a, ..., ay such that

B(T) =) flapd(a)
i=1
is minimized, where d(a;) is the depth of a;.

Greedy idea:
Pick two characters x,y from A with the smallest weights
Create a subtree that has these two characters as leaves.
Label the root of this subtree as z.
Set frequency f(z) « f(x) + f(¥).
Remove x,y from A and add z to A.
Repeat the above procedure (called a merge), until only one
character is left.

(a)

(c)

| £:5] [e9] |e:12] [b:13] [d:16] |a:45]

19 [a1g

0 1
| £:5]| | e9]

0 1
lc:12] [b:13]

[£:5] [e9]

Example

b) [c12] B3] [&16] [2:45]
o/ \I

[£:5] [e9]
(@) R 30
0/ \I 0o/ \l
[c:12] [b:13] (14) [a@:16
0/ \I
| £:5] | e9]

()

[£:5] [e9 |

The Algorithm

Huffman (A4) :
create a min-priority queue (@ on A, with weight as key
for i<1 ton—-1
allocate a new node z
x « Extract-Min (Q)
y « Extract-Min (Q)
z.left « x
z.right « y
z.weight « x.weight + y.weight
Insert(Q,z)
return Extract-Min(Q) // return the root of the tree

Running time: O(nlogn)

Huffman Coding: Correctness

Lemma 1: An optimal prefix code tree must be "full”, i.e., every internal
node has exactly two children.

Pf: If some internal node had only one child,

// >\

A

o
A
"m_,”ll l‘x_,)

then we could simply get rid of this node and replace it with its child.
This would decrease the total cost of the encoding.

Huffman Coding: Correctness

Observation: Moving a small-frequency character downward in T doesn't
make it worse.

Lemma 2: Let T be prefix code tree and T’ be another obtained from T
by swapping two leaf nodes x and b. If,

f(x) = f(b),d(x) = d(b)

then,
B(T" < B(T).
T b
Yy Yy

10

IA

Huffman Coding: Correctness

B(T)— f(x)d(x) — f(b)d(b) + f(x)d(b) + f(b)d(x)
B(T) + (F(x) - £(b)) (d(b) — d(x))

" "

<0 >0

B(T).

T T

Huffman Coding: Correctness

Lemma 3: Consider the two characters x and y with the smallest
frequencies. There is an optimal code free in which these two letters
are sibling leaves at the deepest level of the tree.

Pf: Let T be any optimal prefix code tree, b and c be two siblings at the
deepest level of the tree (must exist because T is full).

T -T-" I—u’.’
O BON O
' B 20 Y [l —~ =
Q s . /;L”QR_ ff(“j“‘x__ !
2
1Y Y | c
niNe il O O
\\M / x\ \\
h o x c €T i

Assume without loss of generality that f(x) < f(b) and f(y) < f(¢)
(If necessary) swap x with b and swap y with c.
Proved due to Lemma 2.

12

Huffman Coding: Correctness

Lemma 4: Let T be a prefix code tree and x and y are two sibling
leaves. Let T’ be obtained from T by removing x and y, naming the
parent z, and setting f(z) = f(x) + f(¥). Then

B(T) = B(T") + f(x) + f()
Pf: B(T) = B(T") = f(2)d(2) + f(x)(d(2) + D + f(¥)(d(2) + 1)

=B(T") = (f() + f)d(2) + (f () + f()(d(2) + 1)
=B(T) + f(x) +f).

13

Huffman Coding: Correctness

Theorem: The Huffman tree is optimal.

Pf: (By induction on n, the number of characters)
Base case n = 2: Tree with two leaves. Obviously optimal.
Induction hypothesis: Huffman's algorithm produces optimal tree
in the case of n — 1 characters.
Induction step: Consider the case of n characters:
- Let H be the tree produced by the Huffman's algorithm.
- Need to show: H is optimal.
Due to the way Huffman's algorithm works,
- There are two characters x and y with the smallest

frequencies that are sibling leaves in H.

Let H' be obtained from H by removing x and y, naming the
parent z, and setting f(z) = f(x) + f(y)
Alphabet for H: A; alphabet for H' : A" = A — {x,y} U {z}
By Lemma 4, B(H) =B(H") + f(x) + f ().

Huffman Coding: Correctness

H' is the tree produced by Huffman's algorithm for A’
By the induction hypothesis, H' is optimal for A’

By Lemma 3, there exists an optimal tree T where x and y are
sibling leaves.

Let T’ be obtained from T by removing x and y, haming the parent
z,and setting f(z) = f(x) + f (¥).

T' is a prefix code tree for alphabet A'.

By Lemma 4, B(T) = B(T") + f(x) + f(y).

Hence
B(H)=B(H) + f(x) + f(¥)
<B(T)+f(x)+ f(y) (H' is optimal for A")
= B(T).

Therefore, H must be optimal. Proved.

15

