
Lecture 10: Huffman Coding



Encoding

a b c d e f

Frequency (in thousands) 45 13 12 16 9 5

Fixed-length codeword 000 001 010 011 100 101

Variable-length codeword 0 101 100 111 1101 1100

2

Encoding: Replace characters by corresponding codewords.

Q: How to design a code to minimize the length of the encoded message?

Ex: For a file with 100,000 characters with distribution in the table 

above, the fixed-length code requires

3 ⋅ 100,000 = 300,000 bits

The variable-length code requires

(45 · 1 + 13 · 3 + 12 · 3 + 16 · 3 + 9 · 4 + 5 · 4) · 1000 = 224,000 bits



Decoding

Decoding: Replace codewords by corresponding characters.

C1 = {a = 00, b = 01, c = 10, d = 11}.

C2 = {a = 0, b = 110, c = 10, d = 111}.

C3 = {a = 1, b = 110, c = 10, d = 111}

A message is uniquely decodable if it can only be decoded in one way.

Ex:

 Relative to C1, 010011 is uniquely decodable to bad.

 Relative to C2, 1100111 is uniquely decodable to bad. 

 But, relative to C 3 , 1101111 is not uniquely decipherable since 

it could have encoded to either bad or acad.

In fact, one can show that every message encoded using C1 or C2 is 

uniquely decodable. 

 C1: Because it is a fixed-length code.

 C2: Because it is a prefix-free code.

3



Prefix Codes

Def: A code is called a prefix (free) code if no codeword is a prefix of 

another one.

Theorem: Every message encoded by a prefix free code is uniquely 

decodable.

Pf: Since no codeword is a prefix of any other, we can always find the 

first codeword in a message, peel it off, and continue decoding.

Ex: code: {a = 0, b = 110, c = 10, d = 111}.

01101100 = 01101100 = abba

Note: There are other kinds of codes that are also uniquely decocable.

Theorem (proof omitted): The best prefix code can achieve the optimal 

data compression among any code that is uniquely decodable.

Q: How to find the prefix code that results in the smallest encoded 

message for a given file?

4



Correspondence between Binary Trees and Prefix Codes

5

Left edge is labeled 0; right edge is labeled 1.

The binary string on a path from the root to a leaf is the codeword 

associated with the character at the leaf.

The depth of a leaf is equal to the length of the codeword.



Problem Restated

Problem definition: Given an alphabet 𝐴 of 𝑛 characters 𝑎1, … , 𝑎𝑛 with 

weights 𝑓(𝑎1), … , 𝑓(𝑎𝑛), find a binary tree 𝑇 with 𝑛 leaves labeled 

𝑎1, … , 𝑎𝑛 such that
𝐵 𝑇 = 

𝑖=1

𝑛

𝑓 𝑎𝑖 𝑑(𝑎𝑖)

is minimized, where 𝑑(𝑎𝑖) is the depth of 𝑎𝑖.

Greedy idea:

 Pick two characters 𝑥, 𝑦 from 𝐴 with the smallest weights

 Create a subtree that has these two characters as leaves.

 Label the root of this subtree as 𝑧.

 Set frequency 𝑓 𝑧 ← 𝑓(𝑥) + 𝑓(𝑦).

 Remove 𝑥, 𝑦 from 𝐴 and add 𝑧 to 𝐴.

 Repeat the above procedure (called a merge), until only one 

character is left.

6



Example

7



The Algorithm

Running time: 𝑂(𝑛 log 𝑛)

8

Huffman(𝐴):
create a min-priority queue 𝑄 on 𝐴, with weight as key
for 𝑖 ← 1 to 𝑛 − 1

allocate a new node 𝑧
𝑥 ← Extract-Min(𝑄)
𝑦 ← Extract-Min(𝑄)
𝑧. 𝑙𝑒𝑓𝑡 ← 𝑥
𝑧. 𝑟𝑖𝑔ℎ𝑡 ← 𝑦
𝑧. 𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑥. 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑦.𝑤𝑒𝑖𝑔ℎ𝑡
Insert(𝑄, 𝑧)

return Extract-Min(𝑄) // return the root of the tree



Huffman Coding: Correctness

Lemma 1: An optimal prefix code tree must be “full”, i.e., every internal 

node has exactly two children.

Pf: If some internal node had only one child,

then we could simply get rid of this node and replace it with its child. 

This would decrease the total cost of the encoding.

9



Huffman Coding: Correctness

Observation: Moving a small-frequency character downward in 𝑇 doesn’t 

make it worse. 

Lemma 2: Let 𝑇 be prefix code tree and 𝑇′ be another obtained from 𝑇

by swapping two leaf nodes 𝑥 and 𝑏. If, 

𝑓(𝑥) ≤ 𝑓(𝑏), 𝑑(𝑥) ≤ 𝑑(𝑏)

then,

𝐵(𝑇′) ≤ 𝐵(𝑇).

10



Huffman Coding: Correctness

Pf:

11



Huffman Coding: Correctness

Lemma 3: Consider the two characters 𝑥 and 𝑦 with the smallest 

frequencies. There is an optimal code tree in which these two letters 

are sibling leaves at the deepest level of the tree.

Pf: Let 𝑇 be any optimal prefix code tree, 𝑏 and 𝑐 be two siblings at the 

deepest level of the tree (must exist because 𝑇 is full).

Assume without loss of generality that 𝑓(𝑥) ≤ 𝑓(𝑏) and 𝑓(𝑦) ≤ 𝑓(𝑐)

 (If necessary) swap 𝑥 with 𝑏 and swap 𝑦 with 𝑐.

 Proved due to Lemma 2.

12



Huffman Coding: Correctness

Lemma 4: Let 𝑇 be a prefix code tree and 𝑥 and 𝑦 are two sibling 

leaves. Let 𝑇′ be obtained from 𝑇 by removing 𝑥 and 𝑦, naming the 

parent 𝑧, and setting 𝑓(𝑧) = 𝑓(𝑥) + 𝑓(𝑦). Then

𝐵(𝑇) = 𝐵(𝑇′) + 𝑓(𝑥) + 𝑓(𝑦).

Pf: 𝐵(𝑇) = 𝐵(𝑇′) − 𝑓(𝑧)𝑑(𝑧) + 𝑓(𝑥)(𝑑(𝑧) + 1) + 𝑓(𝑦)(𝑑(𝑧) + 1)

= 𝐵 𝑇′ − 𝑓 𝑥 + 𝑓 𝑦 𝑑 𝑧 + 𝑓 𝑥 + 𝑓 𝑦 𝑑 𝑧 + 1

= 𝐵(𝑇′) + 𝑓(𝑥) + 𝑓 (𝑦).

13



Huffman Coding: Correctness

Theorem: The Huffman tree is optimal.

Pf: (By induction on 𝑛, the number of characters) 

 Base case 𝑛 = 2: Tree with two leaves. Obviously optimal.

 Induction hypothesis: Huffman’s algorithm produces optimal tree 

in the case of 𝑛 − 1 characters.

 Induction step: Consider the case of 𝑛 characters:

– Let 𝐻 be the tree produced by the Huffman’s algorithm.

– Need to show: 𝐻 is optimal.

 Due to the way Huffman’s algorithm works,

– There are two characters 𝑥 and 𝑦 with the smallest 

frequencies that are sibling leaves in 𝐻.

 Let 𝐻′ be obtained from 𝐻 by removing 𝑥 and 𝑦, naming the 

parent 𝑧, and setting 𝑓(𝑧) = 𝑓(𝑥) + 𝑓(𝑦)

 Alphabet for 𝐻: 𝐴; alphabet for 𝐻′ ∶ 𝐴′ = 𝐴 − {𝑥, 𝑦} ∪ {𝑧}

 By Lemma 4, 𝐵(𝐻) = 𝐵(𝐻′) + 𝑓(𝑥) + 𝑓 (𝑦).

14



Huffman Coding: Correctness

 𝐻′ is the tree produced by Huffman’s algorithm for 𝐴′

 By the induction hypothesis, 𝐻′ is optimal for 𝐴′.

 By Lemma 3, there exists an optimal tree 𝑇 where 𝑥 and 𝑦 are 

sibling leaves.

 Let 𝑇′ be obtained from 𝑇 by removing 𝑥 and 𝑦, naming the parent 

𝑧, and setting 𝑓(𝑧) = 𝑓(𝑥) + 𝑓 (𝑦).

 𝑇′ is a prefix code tree for alphabet 𝐴′.

 By Lemma 4, 𝐵(𝑇) = 𝐵(𝑇′) + 𝑓(𝑥) + 𝑓(𝑦).

 Hence

𝐵(𝐻) = 𝐵(𝐻′) + 𝑓(𝑥) + 𝑓(𝑦)

≤ 𝐵(𝑇′) + 𝑓(𝑥) + 𝑓(𝑦) (𝐻′ is optimal for 𝐴′ )

= 𝐵(𝑇).

 Therefore, 𝐻 must be optimal. Proved.

15


