
Lecture 9: Greedy Algorithms

A greedy algorithm always makes the choice that looks best at

the moment and adds it to the current partial solution.

Greedy algorithms don’t always yield optimal solutions, but when

they do, they’re usually the simplest and most efficient

algorithms available.

Interval Scheduling

Interval scheduling.

 Job 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Two jobs are compatible if they don't overlap.

 Goal: find maximum subset of mutually compatible jobs.

2

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided

it's compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of start time

𝑠𝑗.

 [Earliest finish time] Consider jobs in ascending order of finish

time 𝑓𝑗.

 [Shortest interval] Consider jobs in ascending order of interval

length 𝑓𝑗 − 𝑠𝑗.

 [Fewest conflicts] For each job, count the number of conflicting

jobs 𝑐𝑗. Schedule in ascending order of conflicts 𝑐𝑗.

3

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided

it's compatible with the ones already taken.

4

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time.

Take each job provided it's compatible with the ones already taken.

Running time: Θ(𝑛 log𝑛).

 Remember the finish time of the last job added to 𝐴.

 Job 𝑗 is compatible with 𝐴 if 𝑠𝑗  𝑙𝑎𝑠𝑡.

Remember: Correctness (optimality) of greedy algorithms is usually not

obvious. Need to prove!

5

Sort jobs by finish times so that 𝑓1  𝑓2  …  𝑓𝑛
𝐴 ← ∅, 𝑙𝑎𝑠𝑡 ← 0
for 𝑗 ← 1 to 𝑛

if 𝑠𝑗 ≥ 𝑙𝑎𝑠𝑡 then 𝐴 ← 𝐴 ∪ {𝑗}, 𝑙𝑎𝑠𝑡 ← 𝑓𝑗
return 𝐴

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Proof.

 Assume greedy is different from OPT. Let's see what’s different.

 Let 𝑖1, 𝑖2, … 𝑖𝑘 denote the set of jobs selected by greedy.

 Let 𝑗1, 𝑗2, … 𝑗𝑚 denote set of jobs in the optimal solution with

𝑖1 = 𝑗1, 𝑖2 = 𝑗2, … , 𝑖𝑟 = 𝑗𝑟 for the largest possible value of 𝑟.

6

𝑗1 𝑗2 𝑗𝑟

𝑖1 𝑖1 𝑖𝑟 𝑖𝑟+1

. . .

Greedy:

OPT: 𝑗𝑟+1

why not replace job 𝑗𝑟+1
with job 𝑖𝑟+1?

job 𝑖𝑟+1 finishes before 𝑗𝑟+1

𝑖𝑟+1

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Proof.

 Assume greedy is different from OPT. Let's see what’s different.

 Let 𝑖1, 𝑖2, … 𝑖𝑘 denote the set of jobs selected by greedy.

 Let 𝑗1, 𝑗2, … 𝑗𝑚 denote set of jobs in the optimal solution with

𝑖1 = 𝑗1, 𝑖2 = 𝑗2, … , 𝑖𝑟 = 𝑗𝑟 for the largest possible value of 𝑟.

 Do this repeatedly until OPT is the same as greedy

– Important: Quality of OPT doesn’t change

7

𝑗1 𝑗2 𝑗𝑟

𝑖1 𝑖1 𝑖𝑟 𝑖𝑟+1

. . .

Greedy:

OPT:

must still be compatible

job 𝑖𝑟+1 finishes before 𝑗𝑟+1

The Fractional Knapsack Problem

Input: A set of 𝑛 items, where item 𝑖 has weight 𝑤𝑖 and value 𝑣𝑖, and a

knapsack with capacity 𝑊.

Goal: Find 0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 such that 𝑖=1
𝑛 𝑥𝑖𝑤𝑖 ≤ 𝑊 and 𝑖=1

𝑛 𝑥𝑖𝑣𝑖 is

maximized.

 The 𝑥𝑖 ’s must be 0 or 1: The 0/1 knapsack problem.

 The 𝑥𝑖 ’s can take fractional values: The fractional knapsack problem

8

The Greedy Algorithm for Fractional Knapsack

Idea:

 Sort all items by value-per-pound

 For each item, take as much as possible

Running time: Θ(𝑛 log 𝑛)

Note: This algorithm cannot solve the 0/1 version optimally.

9

Sort items so that
𝑣1

𝑤1
>

𝑣2

𝑤2
> ⋯ >

𝑣𝑛

𝑤𝑛
𝑤 ← 𝑊
for 𝑖 ← 1 to 𝑛

if 𝑤𝑖 ≤ 𝑤 then

𝑥𝑖 ← 1
𝑤 ← 𝑤 − 𝑤𝑖

else

𝑥𝑖 ← 𝑤/𝑤𝑖
return

return

Greedy Algorithm: Correctness

Theorem: The greedy algorithm is optimal.

Proof: We will assume that 𝑖=1
𝑛 𝑤𝑖 ≥ 𝑊. Otherwise the algorithm is

trivially optimal.

Let the greedy solution be 𝐺 = 𝑥1, 𝑥2, … , 𝑥𝑘 , 0, … , 0

 Note: All 𝑥𝑖 ’s must be equal to 1, except possibly for 𝑖 = 𝑘.

Consider any optimal solution 𝑂 = 𝑦1, 𝑦2, … , 𝑦𝑛
 Note: Both 𝐺 and 𝑂 must fully pack the knapsack.

Look at the first item 𝑖 where the two solutions differ.

 By greedy nature, 𝑥𝑖 > 𝑦𝑖
 Let 𝑥 = 𝑥𝑖 − 𝑦𝑖

10

Greedy Algorithm: Correctness (continued)

We will modify 𝑂 as follows:

 Set 𝑦𝑖 ← 𝑥𝑖 and remove part of any items 𝑖 + 1 to item 𝑛 of total

weight 𝑥𝑤𝑖
 This is always doable because in 𝑂, the total weight of item 𝑖 to 𝑛

is the same as that in 𝐺

After the modification:

 The total value cannot decrease, since all the subsequent items

have lesser or equal value-per-pound.

 Since 𝑂 is already an optimal solution, the value cannot increase.

 So the value must stay the same.

By repeating this process, we will eventually convert 𝑂 into 𝐺, without

changing the total value of the selection. Therefore 𝐺 is also optimal.

11

Interval Partitioning

Interval partitioning.

 Lecture 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Goal: find the minimum number of classrooms to schedule all

lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

12

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Interval Partitioning

Interval partitioning.

 Lecture 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

 Goal: find the minimum number of classrooms to schedule all

lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

13

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

14

Sort intervals by starting time so that 𝑠1  𝑠2  …  𝑠𝑛.
𝑑 ← 0 // # classrooms used so far

for 𝑗 ← 1 to 𝑛
if lecture 𝑗 is compatible with some classroom 𝑘 then

schedule lecture 𝑗 in classroom 𝑘
else

allocate a new classroom 𝑑 + 1
schedule lecture 𝑗 in classroom 𝑑 + 1
𝑑 ← 𝑑 + 1

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that

contain any time instance.

Key observation. Number of classrooms needed  depth.

Ex: Depth of schedule below = 3  this schedule is optimal.

We will show: The # classrooms used by the greedy algorithm = depth.

15

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Interval Partitioning: Correctness

Theorem. Greedy algorithm is optimal.

Pf.

 Let 𝑑 = number of classrooms that the greedy algorithm uses.

 Classroom 𝑑 is opened because we needed to schedule a lecture, say

𝑗, that is incompatible with all 𝑑 − 1 other classrooms.

 Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than 𝑠𝑗.

 Thus, we have 𝑑 lectures overlapping at time 𝑠𝑗 + .

 Key observation  depth ≥ 𝑑.

16

Interval Partitioning: Running Time

Running time: 𝑂(𝑛 log 𝑛)

 Brute-force implementation of line (*) takes 𝑂(𝑛) time ⇒ 𝑂(𝑛2) in total

 Observation: If 𝑗 is not compatible with the classroom with the earliest

finish time, then 𝑗 is not compatible with any other classroom

 Keep the classrooms in a minimum priority queue, with finish time of the

last job being the key

– Line (**) is an “increase-key” operation: 𝑂(log𝑛) time

– It always increases the key of the minimum element of the heap

Note: Not easy to show Θ(𝑛 log 𝑛). Just write big-Oh whenever in doubt.

17

Sort intervals by starting time so that 𝑠1  𝑠2  …  𝑠𝑛.
𝑑 ← 0 // # classrooms used so far

for 𝑗 ← 1 to 𝑛
if lecture 𝑗 is compatible with some classroom 𝑘 then (*)

schedule lecture 𝑗 in classroom 𝑘 (**)

else

allocate a new classroom 𝑑 + 1
schedule lecture 𝑗 in classroom 𝑑 + 1
𝑑 ← 𝑑 + 1

