
Lecture 7: Heaps and Heapsort

An 𝑂(𝑛 log𝑛)-time in-place sorting algorithm



(Binary) Heap

2

Structure of a heap: An almost complete binary tree

 All levels are full except possibly the lowest level

 If the lowest level is not full, then nodes must be packed to the left

 Allows us to store the heap in an array (no pointers needed!)

– For any element in array position 𝑖: 

Left child is in position 2𝑖

Right child in position 2𝑖 + 1

The parent is in position 𝑖/2

 The height of a heap with 𝑛 elements is Θ(log 𝑛)



(Binary) Heap

3

Property of a max-heap: Parent ≥ child

 Consequence: root is the maximum element in the heap

Property of a min-heap: Parent ≤ child

 Consequence: root is the minimum element in the heap

Note: We will assume a max-heap by default, but everything applies to a 

min-heap by symmetry.



Maintaining the heap property

4

Given: A node 𝑖 in a heap such that

 the binary trees under 

Left(𝑖) and Right(𝑖) are 

max-heaps

 𝐴[𝑖] might be smaller than 

Left(𝑖) or Right(𝑖)

Goal: Make the binary tree under 𝑖 a 

max-heap



Maintaining the heap property

5

Max-Heapify(𝐴, 𝑖):

𝑙 ← Left(i), 𝑟 ← Right(𝑖)

if 𝑙 ≤ 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 and 𝐴[𝑙] > 𝐴[𝑖] then

𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑙

else 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑖

if 𝑟 ≤ 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 and 𝐴[𝑟] > 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡] then

𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑟

if 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ≠ 𝑖 then

exchange 𝐴[𝑖] with 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡]

Max-Heapify(𝐴, 𝑙𝑎𝑟𝑔𝑒𝑠𝑡)

Running time: 𝑂(log 𝑛)



Building a heap

6

Build-Max-Heap(𝐴):

𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 ← 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ

for 𝑖 ← ⌊𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ/2⌋ downto 1

Max-Heapify(𝐴, 𝑖)



Analysis of heap-building

𝑂(𝑛 log𝑛) is an easy upper bound, but not tight, i.e., can’t write Θ(𝑛 log𝑛)

Theorem: It takes Θ(𝑛) time to build a heap.

Proof: (Textbook method needs calculus. Here we show an elementary 

method.)

7

level # nodes cost per
Max-Heapify

total cost

0 1 ≤ log𝑛 ≤ 1 ⋅ log 𝑛

1 2 ≤ log𝑛 − 1 ≤ 2 ⋅ (log 𝑛 − 1)

2 4 ≤ log𝑛 − 2 ≤ 4 ⋅ (log 𝑛 − 2)

… … … …

log 𝑛 ≤ 𝑛 0 0



Analysis of heap-building (continued)

1 1 1 … 1

2 2 … 2

4 … 4

… …

𝑛/2

8

2 ⋅ 1 2 ⋅ 2 2 ⋅ 4 … 2 ⋅ 𝑛/2 = Θ(𝑛)



Heapsort

Running time: 𝑂(𝑛 log 𝑛), dominated by the 𝑛 MaxHeapify operations.

Q: Is it Θ(𝑛 log𝑛)?

A: Yes, but difficult to show. (And we will see a stronger result later.)

Working space: 𝑂(1)

Q: Can we use a min-heap to implement heapsort?

9

Heapsort(𝐴):

Build-Max-Heap(𝐴)

for 𝑖 ← 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ downto 2

exchange 𝐴[1] with 𝐴 𝑖

𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 ← 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 − 1

MaxHeapify(𝐴, 1)



Summary of comparison-based sorting algorithms

10

Insertion 
sort

Merge sort Quicksort Heapsort

Running time Θ(𝑛2) Θ(𝑛 log 𝑛) Θ(𝑛 log 𝑛) 𝑂(𝑛 log 𝑛)

Working space Θ(1) Θ(𝑛) Θ(log 𝑛) Θ(1)

Randomized No No Yes No

Cache 
performance

Good Good Good Bad

Parallelization No Excellent Good No

Stable Yes Yes No No

Stable: The ordering of equal elements are preserved after sorting.



Priority queues

A priority queue is a data structure that supports the following 

operations:

 Maximum(𝑆) returns the element of 𝑆 with the largest key.

 Insert(𝑆, 𝑥) inserts the element 𝑥 into the set 𝑆.

 Extract-Max(𝑆) removes and returns the element of S with the 

largest key.

 Increase-Key(𝑆, 𝑖, 𝑘) increases 𝐴 𝑖 to the new value 𝑘. 

 Decrease-Key(𝑆, 𝑖, 𝑘) decreases 𝐴[𝑖] to the new value 𝑘. 

11

Heap-Extract-Max(𝐴):

if 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 < 1 then return error

𝑚𝑎𝑥 ← 𝐴[1]

𝐴 1 ← 𝐴[𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒]

𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 ← 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 − 1

Max-Heapify(𝐴, 1)

return 𝑚𝑎𝑥

Heap-Decrease-Key(𝐴, 𝑖, 𝑘):

𝐴 𝑖 ← 𝑘

Max-Heapify(𝐴, 𝑖)



Heap: Increase-Key

12

Heap-Increase-Key(𝐴, 𝑖, 𝑘):

𝐴 𝑖 ← 𝑘𝑒𝑦

while 𝑖 > 1 and 𝐴[Parent 𝑖 ] < 𝐴[𝑖]

exchange 𝐴[𝑖] with 𝐴[Parent(𝑖)]

𝑖 ← Parent(𝑖)

Running time: 𝑂(log 𝑛)

Max-Heap-Insert(𝐴, 𝑘)

𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 ← 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 + 1

𝐴 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒 ← −∞

Heap-Increase-Key(𝐴, 𝐴. ℎ𝑒𝑎𝑝𝑠𝑖𝑧𝑒, 𝑘)


