Lecture 7: Heaps and Heapsort

An $O(n \log n)$ -time in-place sorting algorithm

(Binary) Heap

Structure of a heap: An almost complete binary tree

- All levels are full except possibly the lowest level
- If the lowest level is not full, then nodes must be packed to the left
- Allows us to store the heap in an array (no pointers needed!)
 - For any element in array position i: Left child is in position 2iRight child in position 2i + 1The parent is in position $\lfloor i/2 \rfloor$
- The height of a heap with n elements is $\Theta(\log n)$

(Binary) Heap

Property of a max-heap: Parent \geq child

Consequence: root is the maximum element in the heap

Property of a min-heap: Parent \leq child

Consequence: root is the minimum element in the heap

Note: We will assume a max-heap by default, but everything applies to a min-heap by symmetry.

Maintaining the heap property

Given: A node i in a heap such that

- the binary trees under
 Left(i) and Right(i) are
 max-heaps
- A[i] might be smaller than Left(i) or Right(i)

Goal: Make the binary tree under i a max-heap

Maintaining the heap property

Max-Heapify(A,i):

 $l \leftarrow \text{Left(i)}, r \leftarrow \text{Right(}i\text{)}$

if $l \le A$. heapsize and A[l] > A[i] then $largest \leftarrow l$

else $largest \leftarrow i$

if $r \le A.heapsize$ and A[r] > A[largest] then $largest \leftarrow r$

if $largest \neq i$ then

exchange A[i] with A[largest]

Max-Heapify(A, largest)

Analysis of heap-building

level	# nodes	cost per Max-Heapify	total cost	
0	1	$\leq \log n$	$\leq 1 \cdot \log n$	
1	2	$\leq \log n - 1$	$\leq 2 \cdot (\log n - 1)$	
2	4	$\leq \log n - 2$	$\leq 4 \cdot (\log n - 2)$	
•••				
$\log n$	$\leq n$	0	0	

 $O(n \log n)$ is an easy upper bound, but not tight, i.e., can't write $\Theta(n \log n)$

Theorem: It takes $\Theta(n)$ time to build a heap.

Proof: (Textbook method needs calculus. Here we show an elementary method.)

Analysis of heap-building (continued)

1	1	1	 1	
	2	2	 2	
		4	 4	
			n/2	
2 · 1	2 · 2	$2 \cdot 4$	 $2 \cdot n/2$	$=\Theta(n)$

Heapsort

```
Heapsort (A):

Build-Max-Heap (A)

for i \leftarrow A. length downto 2

exchange A[1] with A[i]

A. heapsize \leftarrow A. heapsize -1

MaxHeapify (A,1)
```

Running time: $O(n \log n)$, dominated by the n maxHeapify operations.

Q: Is if $\Theta(n \log n)$?

A: Yes, but difficult to show. (And we will see a stronger result later.)

Working space: O(1)

Q: Can we use a min-heap to implement heapsort?

Summary of comparison-based sorting algorithms

	Insertion sort	Merge sort	Quicksort	Heapsort
Running time	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$O(n\log n)$
Working space	$\Theta(1)$	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$
Randomized	No	No	Yes	No
Cache performance	Good	Good	Good	Bad
Parallelization	No	Excellent	Good	No
Stable	Yes	Yes	No	No

Stable: The ordering of equal elements are preserved after sorting.

Priority queues

A priority queue is a data structure that supports the following operations:

- Maximum(S) returns the element of S with the largest key.
- Insert(S, x) inserts the element x into the set S.
- Extract-Max(S) removes and returns the element of S with the largest key.
- Increase-Key(S, i, k) increases A[i] to the new value k.
- Decrease-Key(S, i, k) decreases A[i] to the new value k.

```
Heap-Extract-Max(A):

if A.heapsize < 1 then return error

max \leftarrow A[1]

A[1] \leftarrow A[A.heapsize]

A.heapsize \leftarrow A.heapsize - 1

Max-Heapify(A,1)

return max
```

```
Heap-Decrease-Key (A, i, k):
A[i] \leftarrow k
Max-Heapify (A, i)
```


Heap-Increase-Key (A, i, k):

 $A[i] \leftarrow key$ while i > 1 and A[Parent(i)] < A[i]exchange A[i] with A[Parent(i)] $i \leftarrow Parent(i)$

Running time: $O(\log n)$

Max-Heap-Insert(A, k)

 $A. heapsize \leftarrow A. heapsize + 1$

 $A[A.heapsize] \leftarrow -\infty$

Heap-Increase-Key (A, A. heapsize, k)