
Lecture 6: Quicksort and Linear-Time Selection



Quicksort: The “dual” of merge sort
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Mergesort(𝐴, 𝑝, 𝑟):

if 𝑝 = 𝑟 then return

𝑞 ← (𝑝 + 𝑟)/2

Mergesort(𝐴, 𝑝, 𝑞)

Mergesort(𝐴, 𝑞 + 1, 𝑟)

Merge(𝐴, 𝑝, 𝑞, 𝑟)

First call: Mergesort(𝐴, 1, 𝑛)

merge

sort

divide

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

2 4 5 7 1 2 3 6

1 2 2 3 4 5 6 7 Θ(𝑛)

2𝑇(𝑛/2)

Θ(1)



Quicksort: The “dual” of merge sort
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Mergesort(𝐴, 𝑝, 𝑟):

if 𝑝 = 𝑟 then return

𝑞 ← (𝑝 + 𝑟)/2

Mergesort(𝐴, 𝑝, 𝑞)

Mergesort(𝐴, 𝑞 + 1, 𝑟)

Merge(𝐴, 𝑝, 𝑞, 𝑟)

First call: Mergesort(𝐴, 1, 𝑛)

combine

sort

partition

0

2𝑇(𝑛/2)

Θ(𝑛)

Quicksort(𝐴, 𝑝, 𝑟):

if 𝑞 ≥ 𝑟 then return

𝑞 = Partition(𝐴, 𝑝, 𝑟) 

Quicksort(𝐴, 𝑝, 𝑞 − 1)

Quicksort(𝐴, 𝑞 + 1, 𝑟)

First call: Quicksort(𝐴, 1, 𝑛)

5 2 4 7 1 3 2 6

2 1 3 2 5 4 7 6

1 2 2 3 4 5 6 7

1 2 2 3 4 5 6 7



Partition with the last element as the pivot
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Partition(𝐴, 𝑝, 𝑟):

𝑥 ← 𝐴 𝑟

𝑖 ← 𝑝 − 1

for 𝑗 ← 𝑝 to 𝑟 − 1

if 𝐴 𝑗 ≤ 𝑥 then

𝑖 ← 𝑖 + 1

swap 𝐴[𝑖] and 𝐴 𝑗

swap 𝐴 𝑖 + 1 and 𝐴 𝑟

return 𝑖 + 1

Time: Θ(𝑛)
Working space: 𝑂(1) (in-place algorithm)



Partition: Example
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Pivot selection is crucial

Running time.

 [Best case.] Select the median element as the pivot: quicksort runs 

in Θ(𝑛 log 𝑛) time.

 [Worst case.] Select the smallest (or the largest) element as the 

pivot: quicksort runs in Θ(𝑛2) time.

Q: How to find the median element?

A: Sort? 

A: Randomly choose an element as the pivot! 

Intuition: A randomly selected pivot “typically” partitions the array as 

25% vs 75%, so we have the recurrence 

𝑇 𝑛 = 𝑇
1

4
𝑛 + 𝑇

3

4
𝑛 + 𝑛

which solves to 𝑇 𝑛 = Θ(𝑛 log𝑛). (See next page.)
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Solve the recurrence
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𝑇 𝑛 = 𝑇
1

4
𝑛 + 𝑇

3

4
𝑛 + 𝑛

𝑇(𝑛)

𝑇
3

4
𝑛𝑇

1

4
𝑛

𝑇
32

42
𝑛𝑇

3

42
𝑛𝑇

1

42
𝑛 𝑇

3

42
𝑛

𝑛

𝑛

. . .

log4/3 𝑛 ~ log4 𝑛

Θ(𝑛 log 𝑛)

𝑛

≤ 𝑛



Analysis for Randomized Algorithms

Worst case almost never happens: Every pivot has to be the minimum or 

maximum, which happens with probability Θ(1/𝑛!). 

Expected running time: max
𝑖
𝐸𝑟[𝑇 𝑖, 𝑟 ], where 𝑖 is any input of size 𝑛, 𝑟

is the random numbers used internally, i.e., this is expected running 

time (expectation over the random numbers) on the worst possible 

input.
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Average case analysis Expected case analysis

Used for deterministic
algorithms

Used for randomized
algorithms

Assume the input is chosen 
randomly from some distribution

Need to work for any input

Depends on assumptions on
the input, weaker

Randomization is inherent
within the algorithm, stronger



Analysis of quicksort: The binary tree representation

Assumption: All elements are distinct

Note: Running time = Θ(# comparisons)

Relabel the elements from small to large as z1, z2, …, zn
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z7 z6 z12 z3 z8 z7 z1 z15 z10 z16 z14 z9z17z11 z13 z5z4

z10

z13z5

z16z11z3 z9

z2 z4 z7 z12 z15 z17

z1 z6 z8 z14

first pivot, chosen randomly



Analysis of quicksort

Observation 1: Element only compared with its ancestors and descendants.

 z2 and z7 are compared if their lowest common ancestor (lca) is z2 or z7.

 z2 and z7 are not compared if their lca is z3, z4, z5, or z6.

 Other elements cannot be the lca of z2 and z7

Observation 2: Every element in {zi, …, zj} is equally likely to be the lca of zi and zj

So, Pr[zi and zj are compared] = 2 / (j - i + 1).
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z10

z13z5

z16z11z3 z9

z2 z4 z7 z12 z15 z17

z1 z6 z8 z14



Analysis of quicksort (continued)

Theorem.  Expected # of comparisons is Θ(𝑛 log 𝑛).

Pf.

 Let 𝑋𝑖𝑗 = 1 if 𝑧𝑖 is compared with 𝑧𝑗
 # of comparisons is 𝑋 =  𝑖<𝑗𝑋𝑖𝑗
 E[# of comparisons] =  𝑖<𝑗𝐸[𝑋𝑖𝑗] =  𝑖<𝑗 Pr[zi and zj are compared]

Q: Can you show this is Θ(𝑛 log𝑛) ?
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𝑗 = 2 3 4 … 𝑛

𝑖 = 1
1

2

1

3

1

4
…

1

𝑛

2
1

2

1

3
…

1

𝑛 − 1

3
1

2
…

1

𝑛 − 2

… … … … … …

𝑛 − 1
1

2

𝑂(log𝑛)

𝑂(log 𝑛)

𝑂(log 𝑛)

…

𝑂(log 𝑛)

𝑂(𝑛 log 𝑛)



Quicksort in practice

Why does quicksort work very well in practice?

 Θ(𝑛 log 𝑛) time in expectation on any input

– Actually, it’s Θ(𝑛 log 𝑛) time with very high probability

 Small hidden constants

 Cache-efficient

In practice

 Start with quicksort

 When recursion is too deep (say, > 10 log𝑛), switch to insertion 

sort or heap sort (discussed later)

 Benefit of quicksort but also with Θ(𝑛 log 𝑛) worst-case guarantee

 Implemented in C++ Standard Template Library (STL)
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Randomized Selection

Selection.  Given an array 𝐴 of 𝑛 distinct elements and an integer 𝑖, 

return the 𝑖-th smallest element of 𝐴.

Goal: Want to do better than sorting, i.e., linear time.

Analysis: Textbook method too complicated (involving a lot of math)

 In tutorial: Use indicator random variables, similar to quicksort

 Here: A simple and clever method
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Select(𝐴, 𝑝, 𝑟, 𝑖):

if 𝑝 = 𝑟 then return 𝐴[𝑝]

𝑞 ← Partition(𝐴, 𝑝, 𝑟)

𝑘 ← 𝑞 − 𝑝 + 1

if 𝑖 = 𝑘 then return 𝐴[𝑞]

else if 𝑖 < 𝑘 then return Select(𝐴, 𝑝, 𝑞 − 1, 𝑖)

else return Select(𝐴, 𝑞 + 1, 𝑟, 𝑖 − 𝑘)

First call: Select(𝐴, 1, 𝑛, 𝑖)



Analysis of randomized selection

Theorem: The expected running time of randomized selection is Θ(𝑛).

Pf: Call a pivot “good” if it is between the 25%- and 75%-percentile of 

𝐴, otherwise “bad”. 

 Each good pivot reduces 𝑛 by at least 1/4. 

 The probability of a random pivot being good is 1/2.

Let 𝑋𝑖 be the running time between the 𝑖-th good pivot (not including) 

and the (𝑖 + 1)-th good pivot (including), 𝑖 = 0, 1, 2, …

 The cost to process each pivot in this stage ≤
3

4

𝑖
𝑛

 𝐸[# pivots in each stage] = 2 (waiting time)

 𝐸[𝑋𝑖] ≤ 2 ∙
3

4

𝑖
𝑛

Expected total running time ≤ 𝐸  𝑖 𝑋𝑖 =  𝑖 𝐸 𝑋𝑖 = 𝑂(𝑛).

Remark: There is also a deterministic linear-time selection algorithm 

(Sec 9.3 in textbook)
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Space analysis

Observation: The selection algorithm is recursive, but it is a tail-

recursion. Can rewrite it without using recursion, so that it uses 𝑂(1)

working memory.

Note: Good compilers often do this automatically!

Working space of quicksort: 

 Quicksort is not a tail-recursion.

 Each level of recursion needs 𝑂(1) working space (on system stack).

 There can be Θ(𝑛) levels of recursion in the worst case.

 But can show that there are only Θ(log𝑛) levels of recursion in 

expectation (analysis is complicated)

 Conclusion: Quicksort uses expected Θ(log𝑛) working space.
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