Lecture 5: Randomized Algorithms

The Hiring Problem

```
\begin{aligned} & \underbrace{ \text{Hire-Assistant}(n):} \\ & best \leftarrow 0 \\ & \text{for } i \leftarrow 1 \text{ to } n \\ & \text{interview candidate } i \\ & \text{if candidate } i \text{ is better than } best \text{ then} \\ & & \text{fire } best \\ & & \text{hire candidate } i \\ & & best \leftarrow i \end{aligned}
```

Problem: What's the number of hires?

Worst case: n, which happens when you interview the candidates in the increasing order of quality.

Q: How to avoid the worst case?

A: Interview the candidates in a random order!

A quick review of probability theory

Expectation. Given a discrete random variables X, its expectation E[X] is defined as:

 $E[X] = \sum i \cdot \Pr[X = i]$

Q: Roll a 6-sided dice. What is the expected value?

A:
$$E[X] = \sum_{i=1}^{6} i \cdot \frac{1}{6} = 3.5$$

Q: Roll two dice. What is the expected maximum value?

A:
$$E[X] = 1 \cdot \frac{1}{36} + 2 \cdot \frac{3}{36} + 3 \cdot \frac{5}{36} + 4 \cdot \frac{7}{36} + 5 \cdot \frac{9}{36} + 6 \cdot \frac{11}{36} = 4.47$$

Q (waiting time for the first success): Coin is heads with probability p and tails with probability 1-p. How many flips X until first heads?

A:
$$E[X] = \sum_{j=1}^{\infty} j \cdot \Pr[X = j] = \sum_{j=1}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=1}^{\infty} j (1-p)^{j} = \frac{p}{1-p} \cdot \frac{1-p}{p^{2}} = \frac{1}{p}$$

j-1 tails 1 head

3

Expectation: Two Properties

Indicator random variables. If X only takes 0 or 1, E[X] = Pr[X = 1].

Linearity of expectation. Given two random variables X and Y (not necessarily independent),

$$E[X+Y] = E[X] + E[Y].$$

Remark: E[XY] = E[X]E[Y] only when X and Y are independent.

Example. Shuffle a deck of n cards; turn them over one at a time; try to guess each card. Suppose you can't remember what's been turned over already, and just guess a card from full deck uniformly at random.

Q. What's the expected number of correct guesses?

A. (surprisingly effortless using linearity of expectation)

- Let $X_i = 1$ if i^{th} guess is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \cdots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \cdots + E[X_n] = 1/n + \cdots + 1/n = 1.$

Guessing Cards with Memory

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Q. What's the expected number of correct guesses?

A.

- Let $X_i = 1$ if i^{th} guess is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \cdots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/(n-i+1)$.
- $E[X] = E[X_1] + \dots + E[X_n] = \frac{1}{n} + \dots + \frac{1}{2} + \frac{1}{1} = \Theta(\log n)$.

The Hiring Problem: Analysis

```
\begin{aligned} & \text{Hire-Assistant}(n): \\ & \text{randomly permute all } n \text{ candiates} \\ & best \leftarrow 0 \\ & \text{for } i \leftarrow 1 \text{ to } n \\ & \text{ interview candidate } i \\ & \text{ if candidate } i \text{ is better than } best \text{ then} \\ & & \text{ fire } best \\ & & \text{ hire candidate } i \end{aligned}
```

Q: What's the expected number of hires?

A:

- Let $X_i = 1$ if you hire candidate i and 0 otherwise.
- Let $X = \text{number of hires} = X_1 + \cdots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/i$. (Among the first i candidates, the best has probability 1/i to be placed at the last position.)
- $E[X] = E[X_1] + \dots + E[X_n] = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} + \frac{1}{n} = \Theta(\log n)$.

How to Generate a Random Permutation

RandomPermute (A):

```
n \leftarrow A.length for i \leftarrow 1 to n swap A[i] with A[Random(1,i)]
```

Note: This algorithm is slightly different from the one in textbook

Analysis

• O(n) time, O(1) working space

Generates a random number between 1 and i uniformly.

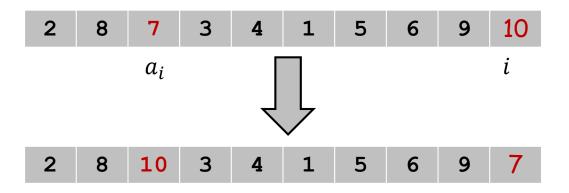
Correctness:

- Precise meaning of a "random permutation": Each different permutation is the output with probability 1/n!
- We will show that after the i-th iteration, A[1..i] has been randomly permuted, by induction on i.
 - Base case i = 1: trivial
 - Assume the A[1..i-1] has been randomly permuted after i-1 iterations of the algorithm.
 - Consider any permutation $(a_1, ..., a_i)$ for A[1..i]. What's the probability that $A[1..i] = (a_1, ..., a_i)$ after the *i*-th iteration?

Random Permutation: Correctness

Proof of correctness (continued):

- Label the initial elements as 1, 2, ..., i.
- If after the *i*-th step, $A[1..i] = (a_1, a_2, ..., a_i)$, then the *i*-th step must be like this (i = 10 in the example):



- So after the (i-1)-the step, A[1..i-1] = (2,8,7,3,4,1,5,6,9), which happens with probability 1/(i-1)! (by induction hypothesis)
- The last swap must choose a_i to swap, which happens with probability 1/i
- Thus, after the *i*-th step, $\Pr[A[1..i] = (a_1, ..., a_i)] = \frac{1}{(i-1)!} \cdot \frac{1}{i} = \frac{1}{i!}$

How Humans Do Shuffling

Riffle shuffle

Analysis:

- $\frac{3}{2}\log n$ riffle shuffles can shuffle a deck of n cards to produce a distribution that is close to uniform [Bayer & Diaconis, 1992].
- For n = 52, 8 shuffles are good, 7 also OK.

The Birthday Paradox

Problem: Suppose there are n=365 days in a year, and in a room of k people, each person's birthday falls in any one of the n days with equal probability. How large should k be for us to expect two people with the same birthday?

Analysis:

- Define $X_{ij}=1$ if person i and person j have the same birthday, and 0 otherwise.
- We know $E[X_{ij}] = \Pr[X_{ij} = 1] = 1/n$.
- Let $X = \sum_{1 \le i < j \le k} X_{ij}$ be the number of pairs of people having the same birthday.
- We have $E[X] = E\left[\sum_{1 \le i < j \le k} X_{ij}\right] = {k \choose 2} \frac{1}{n} = \frac{k(k-1)}{2n}$
- So, when $\frac{k(k-1)}{2n} \ge \frac{(k-1)^2}{2n} \ge 1$, or $k \ge \sqrt{2n} + 1 \approx 28$, we expect to see at least one pair of people having the same birthday.

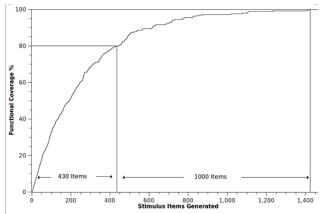
Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming a box contains each type of coupon equally likely, how many boxes do you need to open to have at least one coupon of each type?

Solution.

- Stage i = time between i and i + 1 distinct coupons.
- Let X_i = number of steps you spend in stage i.
- Let $X = \text{number of steps in total} = X_0 + X_1 + \cdots + X_{n-1}$.

$$E[X] = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} \frac{n}{n-i} = n \sum_{i=1}^{n} \frac{1}{i} = \Theta(n \log n)$$



prob of success = (n-i)/n \Rightarrow expected waiting time = n/(n-i)

Epilogue: How does a computer generate a random number?

Pseudorandom numbers:

- Computed by a deterministic algorithm from a "seed".
- If the "seed" is unknown, then it's difficult to predict the next number to be generated.
 - Often use current machine time as the seed.
- Higher difficulty needs more complicated algorithms.

```
- rand: "linear generator" x_n = (214013x_{n-1} + 2531011) \mod 2^{32}
```

- -ranlux48
- knuth_b
- http://en.cppreference.com/w/cpp/numeric/random

True random numbers:

- Electronic noise, thermal noise, atmospheric noise, etc.
- Expensive and slow
- http://www.random.org