Lecture 3: The Maximum Subarray Problem

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common pattern.

- Break up problem of size n into two equal parts of size $\frac{1}{2}n$.
- Solve two parts recursively.
- Combine two solutions into overall solution.

Techniques needed.

- Algorithm uses recursion.
- Analysis uses recurrences.

A simple divide-and-conquer algorithm: Binary search

Input: An array A of elements in sorted order, and an element x.

Output: Return the position of x if it exists; otherwise output nil.

```
4 7 10 15 19 20 42 54 87 90
```

```
BinarySearch (A, p, r, x):

if p > r then return nil

q \leftarrow \lfloor (p+r)/2 \rfloor

if A[q] = x return q

if x < A[q] then BinarySearch (A, p, q-1, x)

else BinarySearch (A, q+1, r, x)
```

Recurrence: T(n) = T(n/2) + 1, which solves to $T(n) = \Theta(\log n)$.

Note: Unlike merge sort, this algorithm may terminate faster than $\Theta(\log n)$, but the worst-case running time is still $\Theta(\log n)$

The Maximum Subarray Problem

Input: Profit history of a company of the years.

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1

Problem: Find the span of years in which the company earned the most

Answer: Year 5-8, 9 M\$

Formal definition:

Input: An array of numbers A[1 ... n], both positive and negative

Output: Find the maximum V(i,j), where $V(i,j) = \sum_{k=i}^{j} A[k]$

A brute-force algorithm

Idea: Calculate the value of V(i,j) for each pair $i \leq j$ and return the maximum value.

```
V_{max} \leftarrow A[1]
for i \leftarrow 1 to n do
for j \leftarrow i to n do
// calculate V(i,j)
V \leftarrow 0
for k \leftarrow i to j do
V \leftarrow V + A[k]
if V > V_{max} then V_{max} \leftarrow V
```

Running time: $\Theta(n^3)$

A data-reuse algorithm

Idea:

- Don't need to calculate each V(i,j) from scratch.
- Exploit the fact: V(i,j) = V(i,j-1) + A[j]

```
V_{max} \leftarrow A[1]
for i \leftarrow 1 to n do
V \leftarrow 0
for j \leftarrow i to n do
// \text{ calculate } V(i,j)
V \leftarrow V + A[j]
if V > V_{max} then V_{max} \leftarrow V;
return V_{max}
```

Running time: $\Theta(n^2)$

A divide-and-conquer algorithm

Profit $(M \)$ $= 3$ $= 2$ $= 1$ $= 3$					7	3	2	1	Year
110111 (M4) -3 2 1 -4 3 2 -1 3	2 1 -4 5 2 -1 3	-1	2	5	-4	1	2	-3	Profit (M\$)

Idea:

- Cut the array into two halves
- All subarrays can be classified into three cases:
 - Case 1: entirely in the first half
 - Case 2: entirely in the second half
 - Case 3: cross the cut
- The optimal solution for case 1 and 2 can be found recursively.
- Only need to consider case 3.

Compare with merge sort: If we can solve case 3 in linear time, the whole algorithm will run in $\Theta(n \log n)$ time.

Solving case 3

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1
		•					•		

Idea:

- Let $q = \lfloor (p+r)/2 \rfloor$
- Any case 3 subarray must have starting position $\leq q$, and ending position $\geq q+1$
- Such a subarray can be divided into two parts A[i..q] and A[q+1..j], for some i and j
- Just need to maximize each of them separately

Maximize A[i..q] and A[q+1,j]: The data-reuse idea again!

The complete divide-and-conquer algorithm

```
MaxSubarray (A, p, r):
if p = r then return A[p]
q \leftarrow |(p+r)/2|
M_1 \leftarrow \text{MaxSubarray}(A, p, q)
M_2 \leftarrow \text{MaxSubarray}(A, q + 1, r)
L_m \leftarrow -\infty, R_m \leftarrow -\infty
V \leftarrow 0
for i \leftarrow q downto p
       V \leftarrow V + A[i]
       if V > L_m then L_m \leftarrow V
V \leftarrow 0
for i \leftarrow q+1 to r
      V \leftarrow V + A[i]
       if V > R_m then R_m \leftarrow V
return \max\{M_1, M_2, L_m + R_m\}
First call: MaxSubarray (A, 1, n)
```

Analysis:

Recurrence:

$$T(n) = 2T(n/2) + n$$

• So, $T(n) = \Theta(n \log n)$

A linear-time algorithm?

Goal: Find $\max_{i < j} (X[j] - X[i])$

Year	1	2	3	4	5	6	7	8	9
Profit (M\$)	-3	2	1	-4	5	2	-1	3	-1

Observations:

- For some i, suppose X[i] is the lowest point before i (including).
- lacktriangle The optimal interval cannot cross i
 - Otherwise, moving the starting point to i would make it better
- lacktriangle The optimal solution must start from such an i
 - Otherwise, could move the starting point to a lower point

The linear-time algorithm

$$V_{max} \leftarrow -\infty, X_{min} = 0$$
 $X \leftarrow 0, V \leftarrow 0$
for $i \leftarrow 1$ to n do
 $V \leftarrow V + A[i]$
if $V > V_{max}$ then $V_{max} \leftarrow V$
 $X \leftarrow X + A[i]$
if $X < X_{min}$ then
 $X_{min} \leftarrow X$
 $V \leftarrow 0$
return V_m

Even simpler:

```
V_{max} \leftarrow -\infty, V \leftarrow 0
for i \leftarrow 1 to n do
V \leftarrow V + A[i]
if V > V_{max} then V_{max} \leftarrow V
if V < 0 then V \leftarrow 0
```

Observation:

- $X < X_{min}$ iff V < 0
- No need for X!