Lecture 3: The Maximum Subarray Problem

Divide-and-Conquer

Divide-and-conquer.
- Break up problem into several parts.
. Solve each part recursively.
. Combine solutions to sub-problems into overall solution.

Most common pattern.
. Break up problem of size n into two equal parts of size %n.
. Solve two parts recursively.
. Combine two solutions into overall solution.

Techniques needed.
. Algorithm uses recursion.
. Analysis uses recurrences.

A simple divide-and-conquer algorithm: Binary search

Input: An array A of elements in sorted order, and an element x.

Output: Return the position of x if it exists; otherwise output nil.

4 7 10 15 19 20 42 54 87 90

BinarySearch (A4,p,7,x) :

if p>r then return nil

q< |(p+r1)/2]

if A[q] =x return ¢

if x < A[q] then BinarySearch (4,p,q — 1,x)
else BinarySearch(A4,q + 1,7,x)

First call: BinarySearch(4,1,n, x)

Recurrence: T(n) = T(n/2) + 1, which solves to T(n) = 0(logn).

Note: Unlike merge sort, this algorithm may terminate faster than
O(logn), but the worst-case running time is still ©(log n)

The Maximum Subarray Problem

Input: Profit history of a company of the years.

Year 1 2 3 4 5 6 7 8 9

Profit(M$) | 3 | 2 | 1 | -4 | 5 | 2 | 1| 3 | 1

Problem: Find the span of years in which the company earned the most

Answer: Year 5-8 , 9 M$

Formal definition:
Input: An array of numbers A[1...n], both positive and negative

Output: Find the maximum V (i,), where V(i,j) = {(=iA[k]

A brute-force algorithm

Idea: Calculate the value of V(i,j) for each pair i <j and return the
maximum value.

Vinax < A[1]
for i< 1 to n do
for j«<i to n do
// calculate V(i,))
V<0
for k<i to j do
V<V + Alk]

if V > V,ya then Vi, <V

return V.,

Running time: O(n?)

A data-reuse algorithm

Idea:

Don't need to calculate each V (i, j) from scratch.
Exploit the fact: V(i,j)) =V(i,j — 1) + A[j]

Vimax < A[1]
for i< 1 to n do
V<0
for j«<i to n do
// calculate V(i,))
V <V + Alj]
if V>V, then V., <V,

return V.,

Running time: ©(n?)

A divide-and-conquer algorithm

Year

4

4

Profit (M$) -3

Idea:
Cut the array into two halves
All subarrays can be classified into three cases:
- Case 1: entirely in the first half
- Case 2: entirely in the second half
- Case 3: cross the cut
The optimal solution for case 1 and 2 can be found recursively.
Only need to consider case 3.

Compare with merge sort: If we can solve case 3 in linear time, the whole
algorithm will run in @(nlogn) time.

Solving case 3

Year

Profit (M$) -3 2 1 -4 5 2 -1 3 -1

Idea:

Let g =1(p +1)/2]

Any case 3 subarray must have starting position < g, and ending
position > q + 1

Such a subarray can be divided into two parts A[i..q] and

Alq + 1..j], for some i and j

Just need to maximize each of them separately

Maximize Ali..q] and A[q + 1,j]: The data-reuse idea again!

The complete divide-and-conquer algorithm

MaxSubarray (4,p,7) :

if p=1r then return A[p]
q< |(p+1)/2]
M; < MaxSubarray (4,p,q)
M, « MaxSubarray (4,q + 1,r)
Ly, ¢ —%,R,, « —00
V<0
for i <« q downto p

V <V + Alil

if V>1L, then L, <V
V<0
for i<q+1 to r

V<V + Alil

if V>R,, then R, <V
return max{M;,M,,L,, + R}

First call: MaxSubarray (A4,1,n)

Analysis:
- Recurrence:
T(n) =2T(n/2) +n
. So,T(n) =0(nlogn)

Define: X[i] = A[1] + -+ A[i — 1]

A linear-time algorithm?

Goal: Find max;;(X[j] — X[i])

Year

1 2 3 4 5 6 7 8 9

Profit(M$) | 3 | 2 | 1 | -4 | 5 | 2 | 1| 3 | 1

Observations:

For some i, suppose X[i] is the lowest point before i (including).
The optimal interval cannot cross i

- Otherwise, moving the starting point to i would make it better
The optimal solution must start from such an i

- Otherwise, could move the starting point to a lower point

10

The linear-time algorithm

Vmax o _OO:Xmin
X<0,Ve<0
for i<1 to n do
V<V + Ali]
if V>V, then V., <V
X « X + Ali]
if X <X, then
Ximin < X
V<0

return V),

Even simpler:

Vinax < —0,V < 0

for i«<1 to n do
V<V + Ali]
if V > Ve then Vg <V
if V<0 then V <0

return 1V, ,

Observation:
- X <X, iffV <0
- No need for X|

1

