
Lecture 3: The Maximum Subarray Problem

Divide-and-Conquer

Divide-and-conquer.

 Break up problem into several parts.

 Solve each part recursively.

 Combine solutions to sub-problems into overall solution.

Most common pattern.

 Break up problem of size 𝑛 into two equal parts of size
1

2
𝑛.

 Solve two parts recursively.

 Combine two solutions into overall solution.

Techniques needed.

 Algorithm uses recursion.

 Analysis uses recurrences.

2

A simple divide-and-conquer algorithm: Binary search

Input: An array 𝐴 of elements in sorted order, and an element 𝑥.

Output: Return the position of 𝑥 if it exists; otherwise output nil.

3

4 7 10 15 19 20 42 54 87 90

BinarySearch(𝐴, 𝑝, 𝑟, 𝑥):

if 𝑝 > 𝑟 then return 𝑛𝑖𝑙

𝑞 ← (𝑝 + 𝑟)/2

if 𝐴 𝑞 = 𝑥 return 𝑞

if 𝑥 < 𝐴 𝑞 then BinarySearch(𝐴, 𝑝, 𝑞 − 1, 𝑥)

else BinarySearch(𝐴, 𝑞 + 1, 𝑟, 𝑥)

First call: BinarySearch(𝐴, 1, 𝑛, 𝑥)

Recurrence: 𝑇 𝑛 = 𝑇 𝑛/2 + 1, which solves to 𝑇 𝑛 = Θ(log𝑛).

Note: Unlike merge sort, this algorithm may terminate faster than

Θ(log 𝑛), but the worst-case running time is still Θ(log 𝑛)

The Maximum Subarray Problem

Year 1 2 3 4 5 6 7 8 9

Profit (M$) -3 2 1 -4 5 2 -1 3 -1

4

Input: Profit history of a company of the years.

Problem: Find the span of years in which the company earned the most

Answer: Year 5-8 , 9 M$

Formal definition:

Input: An array of numbers 𝐴[1…𝑛], both positive and negative

Output: Find the maximum 𝑉(𝑖, 𝑗), where 𝑉 𝑖, 𝑗 = 𝑘=𝑖
𝑗

𝐴[𝑘]

A brute-force algorithm

Idea: Calculate the value of 𝑉(𝑖, 𝑗) for each pair 𝑖 ≤ 𝑗 and return the

maximum value.

Running time: Θ(𝑛3)

5

𝑉𝑚𝑎𝑥 ← 𝐴[1]

for 𝑖 ← 1 to 𝑛 do

for 𝑗 ← 𝑖 to 𝑛 do

// calculate 𝑉(𝑖, 𝑗)

𝑉 ← 0

for 𝑘 ← 𝑖 to 𝑗 do

𝑉 ← 𝑉 + 𝐴[𝑘]

if 𝑉 > 𝑉𝑚𝑎𝑥 then 𝑉𝑚𝑎𝑥 ← 𝑉

return 𝑉𝑚𝑎𝑥

A data-reuse algorithm

Idea:

 Don’t need to calculate each 𝑉(𝑖, 𝑗) from scratch.

 Exploit the fact: 𝑉 𝑖, 𝑗 = 𝑉 𝑖, 𝑗 − 1 + 𝐴[𝑗]

Running time: Θ(𝑛2)

6

𝑉𝑚𝑎𝑥 ← 𝐴[1]

for 𝑖 ← 1 to 𝑛 do

𝑉 ← 0

for 𝑗 ← 𝑖 to 𝑛 do

// calculate 𝑉(𝑖, 𝑗)

𝑉 ← 𝑉 + 𝐴[𝑗]

if 𝑉 > 𝑉𝑚𝑎𝑥 then 𝑉𝑚𝑎𝑥 ← 𝑉;

return 𝑉𝑚𝑎𝑥

A divide-and-conquer algorithm

7

Year 1 2 3 4 5 6 7 8 9

Profit (M$) -3 2 1 -4 5 2 -1 3 -1

Idea:

 Cut the array into two halves

 All subarrays can be classified into three cases:

– Case 1: entirely in the first half

– Case 2: entirely in the second half

– Case 3: cross the cut

 The optimal solution for case 1 and 2 can be found recursively.

 Only need to consider case 3.

Compare with merge sort: If we can solve case 3 in linear time, the whole

algorithm will run in Θ(𝑛 log𝑛) time.

Solving case 3

8

Year 1 2 3 4 5 6 7 8 9

Profit (M$) -3 2 1 -4 5 2 -1 3 -1

Idea:

 Let 𝑞 = (𝑝 + 𝑟)/2

 Any case 3 subarray must have starting position ≤ 𝑞, and ending

position ≥ 𝑞 + 1

 Such a subarray can be divided into two parts 𝐴[𝑖. . 𝑞] and

𝐴[𝑞 + 1. . 𝑗], for some 𝑖 and 𝑗

 Just need to maximize each of them separately

Maximize 𝐴 𝑖. . 𝑞 and 𝐴[𝑞 + 1, 𝑗]: The data-reuse idea again!

The complete divide-and-conquer algorithm

Analysis:

 Recurrence:

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛

 So, 𝑇 𝑛 = Θ(𝑛 log 𝑛)

9

MaxSubarray(𝐴, 𝑝, 𝑟):

if 𝑝 = 𝑟 then return 𝐴[𝑝]

𝑞 ← (𝑝 + 𝑟)/2

𝑀1 ← MaxSubarray(𝐴, 𝑝, 𝑞)

𝑀2 ← MaxSubarray(𝐴, 𝑞 + 1, 𝑟)

𝐿𝑚 ← −∞,𝑅𝑚 ← −∞

𝑉 ← 0

for 𝑖 ← 𝑞 downto 𝑝

𝑉 ← 𝑉 + 𝐴 𝑖

if 𝑉 > 𝐿𝑚 then 𝐿𝑚 ← 𝑉

𝑉 ← 0

for 𝑖 ← 𝑞 + 1 to 𝑟

𝑉 ← 𝑉 + 𝐴 𝑖

if 𝑉 > 𝑅𝑚 then 𝑅𝑚 ← 𝑉

return max{𝑀1, 𝑀2, 𝐿𝑚 + 𝑅𝑚}

First call: MaxSubarray(𝐴, 1, 𝑛)

A linear-time algorithm?

Define: 𝑋 𝑖 = 𝐴 1 +⋯+ 𝐴 𝑖 − 1

Goal: Find max𝑖<𝑗(𝑋 𝑗 − 𝑋 𝑖)

10

Year 1 2 3 4 5 6 7 8 9

Profit (M$) -3 2 1 -4 5 2 -1 3 -1

Observations:

 For some 𝑖, suppose 𝑋[𝑖] is the lowest point before 𝑖 (including).

 The optimal interval cannot cross 𝑖

– Otherwise, moving the starting point to 𝑖 would make it better

 The optimal solution must start from such an 𝑖

– Otherwise, could move the starting point to a lower point

The linear-time algorithm

11

𝑉𝑚𝑎𝑥 ← −∞,𝑋𝑚𝑖𝑛 = 0

𝑋 ← 0, 𝑉 ← 0

for 𝑖 ← 1 to 𝑛 do

𝑉 ← 𝑉 + 𝐴 𝑖

if 𝑉 > 𝑉𝑚𝑎𝑥 then 𝑉𝑚𝑎𝑥 ← 𝑉

𝑋 ← 𝑋 + 𝐴 𝑖

if 𝑋 < 𝑋𝑚𝑖𝑛 then

𝑋𝑚𝑖𝑛 ← 𝑋

𝑉 ← 0

return 𝑉𝑚

𝑉𝑚𝑎𝑥 ← −∞,𝑉 ← 0

for 𝑖 ← 1 to 𝑛 do

𝑉 ← 𝑉 + 𝐴 𝑖

if 𝑉 > 𝑉𝑚𝑎𝑥 then 𝑉𝑚𝑎𝑥 ← 𝑉

if 𝑉 < 0 then 𝑉 ← 0

return 𝑉𝑚𝑎𝑥

Even simpler:

Observation:

 𝑋 < 𝑋𝑚𝑖𝑛 iff 𝑉 < 0

 No need for 𝑋!

