Lecture 2: Merge sort

A quick review of recursion and recurrences

Classical example: Tower of Hanoi

Goal:

Move n discs from peg A to peg C

. One disc at a time

. Can't put a larger disc on top of a smaller one

MoveTower (n, pegl, peg2, peg3):

if n=1 then

else

Firs

move the only disc from pegl to peg3

return

MoveTower (n — 1, pegl, peg3, peg2)
move the only disc from pegl to peg3
MoveTower (n — 1, peg2, pegl, peg3)

t call: MoveTower (n,A,B,C)

Keys things tfo remember:

Reduce a problem to the same problem, but with a smaller size

The base case

Step 1

Step 2

B

Step 3

Step 4

A
1
|
|

|
|
1
a

Analyzing a recursive algorithm with recurrence
Q: How many steps (movement of discs) are needed?
Analysis: Let T(n) be the number of steps needed for n discs.

From the recursive algorithm, we have
T(n) =2T(n—1) + 1, n>1
T(1) =1

Solving the recurrence by the expansion method:
T(n)=2T(n—1) +1
=2Q(TMm-2)+1)+1
=2’Tn—-2)+2+1
=22Q2T(n—-3)+1)+2+1
=2T(n—-3)+224+2+1

=2"IT(D) + 2" 2+ + 2242+ 1
=242 4 42242 41
=2"—-1=0(2"

Solving recurrences with the recursion tree method

T(n) =2T(n—1) + 1, n>1

T(1) =1
—Fa— 1 level 0: 1 node
/\
Fer—— 1 For—— 1 level 1: 2 nodes
N N
Tn—-2) Tn-2) Tn—-2) Tn-2) level 2: 22 nodes
level i: 2¢ nodes
total humber of nodes: 1 +2 + 2%+ .- 2" 1 =2"n -1 level n — 1: 21 nodes

Note: This is actually equivalent to the expansion method, but clearer.

Merge sort

Merge sort.

. Divide array into two halves.

. Recursively sort each half.
. Merge two halves to make
sorted whole.

Mergesort (4,p,7r) :

if p=r then return
q< l(p+1)/2l
Mergesort (4,p,q)
Mergesort(4,q + 1,7)
Merge (A,p,q,7)

First call: Mergesort(4,1,n)

3 2 6 divide 0(1)

2 3 6 sort 2T(n/2)

5 6 7 merge 0O(n)

Merge

Merge. Combine two sorted lists into a sorted whole.

Merge (4,p,q,7) :

create two new arrays L and R
L« Alp..q],R < Alq +1..7]
append o at the end of L and R
[<1,j<1
for k<p to r
if L[i] < R[j] then
Alk] « LJ[i]
l<i+1
else
Alk] < R[j]
jej+1

Merge: Example

8.9 10 11.12 13.14 15 1617
, T
k
1 2 3 4 5 I 2 3. 4 3
L|12|4(5]|7]ee R|1[2]|3[6|e L
i j
@ (b)

8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16 17

A ..]1]2 A...IZZ_Z
k k
3 4 5 3 4 35 3 4 5 3 4 35
Li_i57oo R 3[6 e Li_i57oo Ri36oo
i J i J

(c) (d)

Merge: Example
8.9 1011 12 13 -14 15 16 17 8. 9.:10..11..12 13 .14 /15 . 16 . 17

A...IZZB_I 4 ... [
k
1 2 3 4
W [1]2]3]6
J

1 2 3 4 5 5 4 5
L-_45?'m - T
i
(e) ()
8 9 10 11 li_? 13 14 15 16 17 8 9 10 11 lg 13 14 15 16 17
A..,122345-z A.,+1223456.
k k
1 2 3 4 5 1 2 3 4 5] 2 3 4 5 1 2 3 4
i J i

(2) (h)

8 9 10 11 12 13 14 15 16 17
A L EH R A o] |

Merge sort: Complete example

sorted sequence

1 2 2 3 4 5 6 T
/ merge \

2

1 3

7

/N

2

3

Lh

merg&

4

T

/me:rgx

2

4

7

1

2 3

6

/N

1

3

ﬂnerge

1

initial sequence

2

6

8]

merge

Analyzing merge sort

Def. let T(n) be the running time of the algorithm on an array of size n.

Merge sort recurrence.
T(n) <T(n/2]) + T(n/2]) + 0(n), n>1
T(1) = 0(1)

A few simplifications
- Replace < with =
- since we are interested in an big-Oh upper bound of T(n)
. Replace 0(n) with n, replace 0(1) with 1
- since we are interested in an big-Oh upper bound of T(n)
. Assume n is a power of 2, so that we can ignore | |,[|
- since we are interested in an big-Oh upper bound of T(n)
- for any n, let n' be the smallest power of 2 such that n' > n, then
T(n) <T(n") <T(2n) = 0(T(n)), as long as T(n) is a polynomial
function.

10

Solve the recurrence

Simplified merge sort recurrence.
T(n) =2T(n/2) + n, n>1

T(1) =1
T(n)
T(n/2) T(n/2)
T(n/4) T(n/4) T(n/4) T(n/4)

ra 1M ra T T TAW TA) TA)

So, merge sort runs in O(nlogn) time.

log,n

2-n/2

4-n/4

2t-n/2t

nlog,n

1

Running time of merge sort

Q: Is the running time of merge sort also Q(nlogn)?
A: Yes, the worst-case input is when the array is reversely sorted

A: Actuadlly, the running time is the same no matter what the input is
. Or equivalently speaking, every input is the worst case.
. The whole analysis holds if we replace every 0 with Q

Theorem: Merge sort runs in time 0(nlogn).

12

Inversion Number

Def:

. Given array A[1..n], two elements A[i] and A[j] are inverted if i <j

but A[i] > A[J].
. The inversion number of A is the number of inverted pairs.

A useful measure for:
. How "sorted” an array is
. The similarity between two rankings
Songs

ENEANAENES ...
e

3.2,4-2

B2l : 3 4 2 5
—

13

Relation to bubble sort

1st Pass: (41825)->(14825)->(14285)->(14258)
inversion #: 4 3 2 1
2" Pass: (14258)—-(12458)

Theorem: The number of swaps used by bubble sort is equal to the
inversion humber.

Proof: Every swap decreases the inversion number by 1.
Observation: The same holds for insertion sort using swaps.
Q: How to compute the inversion number?

Algorithm 1: Check all ©(n?) pairs.

Algorithm 2: Run bubble sort and count the number of swaps - 8(n?)
time, too.

14

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: divide array into two halves.
. Conquer: recursively count inversions in each half.
. Combine: count inversions where a; and a; are in different halves,
and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: ().
BHEIEEEEIE BEEERERE e 270v2)
5 blue-blue inversions 8 green-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total =5+ 8 +9 =22,

15

Counting Inversions: Combine

Combine: count blue-green inversions
. Assume each half is sorted.

. Count inversions where a; and a; are in different halves.
. Merge two sorted halves into sorted whole to maintain the
sortedness invariant.

BEDDDE BODEED
6 3 2 2 0 O

13 blue-green inversions: 6 +3+2+2+0+0 Count: ©(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: 0(n)

T(n) =2T(n/2)+n, n>1
(The base case T(1) = 1 can often be omitted.)
So, T(n) = ©(nlogn)

16

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A[p..q] and A[q + 1,7] are sorted.

Post-condition. [Sort-and-Count] A[p..q] is sorted.

Sort-and-Count (4,p,7) :

if p=r then return 0

q < l(p+1)/2]

¢, < Sort-and-Count (4,p, q)

¢, < Sort-and-Count (4,q + 1,7)
c3 < Merge-and-Count (4,p,q,7)

return C1 -+ Co + C3

First call: Sort-and-Count(4,1,n)

Merge-and-Count (4,p,q,7) :

create two new arrays L and R
L« Alp..q],R < Alqg +1..7]
append o at the end of L and R
<11
c<0
for k<p tor
if L[i] < R[j] then
Alk] « L[i]
[<i+1
else
Alk] < R[j]
jej+1
c—ct+q—p—i+2

17

