
Lecture 2: Merge sort



A quick review of recursion and recurrences

Classical example: Tower of Hanoi

Goal: Move 𝑛 discs from peg A to peg C

 One disc at a time

 Can’t put a larger disc on top of a smaller one

Keys things to remember:

 Reduce a problem to the same problem, but with a smaller size

 The base case
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MoveTower(𝑛, peg1, peg2, peg3):

if 𝑛 = 1 then 

move the only disc from peg1 to peg3

return

else

MoveTower(𝑛 − 1, peg1, peg3, peg2)

move the only disc from peg1 to peg3

MoveTower(𝑛 − 1, peg2, peg1, peg3)

First call: MoveTower(𝑛, 𝐴, 𝐵, 𝐶)



Analyzing a recursive algorithm with recurrence

Q: How many steps (movement of discs) are needed?

Analysis: Let 𝑇(𝑛) be the number of steps needed for 𝑛 discs.

From the recursive algorithm, we have 

𝑇 𝑛 = 2𝑇 𝑛 − 1 + 1, 𝑛 > 1

𝑇 1 = 1

Solving the recurrence by the expansion method:

𝑇 𝑛 = 2𝑇 𝑛 − 1 + 1

= 2(2 𝑇 𝑛 − 2 + 1 + 1

= 22𝑇 𝑛 − 2 + 2 + 1

= 22 2𝑇 𝑛 − 3 + 1 + 2 + 1

= 23𝑇 𝑛 − 3 + 22 + 2 + 1

= ⋯

= 2𝑛−1𝑇 1 + 2𝑛−2 +⋯+ 22 + 2 + 1

= 2𝑛−1 + 2𝑛−2 +⋯+ 22 + 2 + 1

= 2𝑛 − 1 = Θ 2𝑛
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Solving recurrences with the recursion tree method

𝑇 𝑛 = 2𝑇 𝑛 − 1 + 1, 𝑛 > 1

𝑇 1 = 1
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𝑇 𝑛 1

𝑇 𝑛 − 1 1 𝑇 𝑛 − 1 1

𝑇 𝑛 − 2 𝑇 𝑛 − 2 𝑇 𝑛 − 2 𝑇 𝑛 − 2

level 0: 1 node

level 1: 2 nodes

level 2: 22 nodes

level 𝑖: 2𝑖 nodes

level 𝑛 − 1: 2𝑛−1 nodestotal number of nodes: 1 + 2 + 22 +⋯2𝑛−1 = 2𝑛 − 1

Note: This is actually equivalent to the expansion method, but clearer.



Merge sort

Merge sort.

 Divide array into two halves.

 Recursively sort each half.

 Merge two halves to make 

sorted whole.
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merge

sort

divide

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

2 4 5 7 1 2 3 6

1 2 2 3 4 5 6 7 𝑂(𝑛)

2𝑇(𝑛/2)

𝑂(1)

Mergesort(𝐴, 𝑝, 𝑟):

if 𝑝 = 𝑟 then return

𝑞 ← (𝑝 + 𝑟)/2

Mergesort(𝐴, 𝑝, 𝑞)

Mergesort(𝐴, 𝑞 + 1, 𝑟)

Merge(𝐴, 𝑝, 𝑞, 𝑟)

First call: Mergesort(𝐴, 1, 𝑛)



Merge

Merge.  Combine two sorted lists into a sorted whole.
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Merge(𝐴, 𝑝, 𝑞, 𝑟):

create two new arrays 𝐿 and 𝑅

𝐿 ← 𝐴[𝑝. . 𝑞],𝑅 ← 𝐴[𝑞 + 1. . 𝑟]

append ∞ at the end of 𝐿 and 𝑅

𝑖 ← 1, 𝑗 ← 1

for 𝑘 ← 𝑝 to 𝑟

if 𝐿 𝑖 ≤ 𝑅[𝑗] then

𝐴 𝑘 ← 𝐿[𝑖]

𝑖 ← 𝑖 + 1

else

𝐴 𝑘 ← 𝑅[𝑗]

𝑗 ← 𝑗 + 1



Merge: Example

7



Merge: Example
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Merge sort: Complete example
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Analyzing merge sort

Def.  let 𝑇(𝑛) be the running time of the algorithm on an array of size 𝑛.

Merge sort recurrence.  

𝑇 𝑛 ≤ 𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑂(𝑛), 𝑛 > 1

𝑇 1 = 𝑂(1)

A few simplifications

 Replace ≤ with =

– since we are interested in an big-Oh upper bound of 𝑇(𝑛)

 Replace 𝑂(𝑛) with 𝑛, replace 𝑂(1) with 1

– since we are interested in an big-Oh upper bound of 𝑇(𝑛)

 Assume 𝑛 is a power of 2, so that we can ignore ,

– since we are interested in an big-Oh upper bound of 𝑇(𝑛)

– for any 𝑛, let 𝑛′ be the smallest power of 2 such that 𝑛′ ≥ 𝑛, then 

𝑇 𝑛 ≤ 𝑇 𝑛′ ≤ 𝑇 2𝑛 = 𝑂(𝑇 𝑛 ), as long as 𝑇(𝑛) is a polynomial 

function.
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Solve the recurrence

Simplified merge sort recurrence.  

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛, 𝑛 > 1

𝑇 1 = 1
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𝑇(𝑛)

𝑇(𝑛/2)𝑇(𝑛/2)

𝑇(𝑛/4)𝑇(𝑛/4)𝑇(𝑛/4) 𝑇(𝑛/4)

𝑇(1) 𝑇(1) 𝑇(1) 𝑇(1) 𝑇(1) 𝑇(1) 𝑇(1) 𝑇(1)

𝑛

𝑇(𝑛/2𝑖)

2 ⋅ 𝑛/2

4 ⋅ 𝑛/4

2𝑖 ⋅ 𝑛/2𝑖

𝑛 ⋅ 1

. . .

. . .
log2𝑛

𝑛 log2𝑛So, merge sort runs in 𝑂(𝑛 log 𝑛) time.



Running time of merge sort

Q: Is the running time of merge sort also Ω(𝑛 log 𝑛)?

A: Yes, the worst-case input is when the array is reversely sorted

A: Actually, the running time is the same no matter what the input is

 Or equivalently speaking, every input is the worst case.

 The whole analysis holds if we replace every 𝑂 with Ω

Theorem: Merge sort runs in time Θ(𝑛 log 𝑛).
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Def: 

 Given array 𝐴[1. . 𝑛], two elements 𝐴[𝑖] and 𝐴 𝑗 are inverted if 𝑖 < 𝑗

but 𝐴[𝑖] > 𝐴[𝑗].

 The inversion number of 𝐴 is the number of inverted pairs.

A useful measure for:

 How “sorted” an array is

 The similarity between two rankings

Inversion Number

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Inversions

3-2, 4-2



Relation to bubble sort

1st Pass: ( 4 1 8 2 5 ) → ( 1 4 8 2 5 ) → ( 1 4 2 8 5 ) → ( 1 4 2 5 8 )

inversion #:         4                     3                     2                     1

2nd Pass: ( 1 4 2 5 8 ) → ( 1 2 4 5 8 )

Theorem: The number of swaps used by bubble sort is equal to the 

inversion number.

Proof: Every swap decreases the inversion number by 1.

Observation: The same holds for insertion sort using swaps.

Q: How to compute the inversion number?

Algorithm 1: Check all Θ(𝑛2) pairs.

Algorithm 2: Run bubble sort and count the number of swaps - Θ 𝑛2

time, too.
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Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

 Divide: divide array into two halves.

 Conquer: recursively count inversions in each half.

 Combine: count inversions where 𝑎𝑖 and 𝑎𝑗 are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  Θ(1).

Conquer:  2𝑇(𝑛/2)

Combine:  ???9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions: Combine

Combine:  count blue-green inversions
 Assume each half is sorted.

 Count inversions where 𝑎𝑖 and 𝑎𝑗 are in different halves. 

 Merge two sorted halves into sorted whole to maintain the 

sortedness invariant.

Count:  Θ(𝑛)

Merge: Θ(𝑛)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

6 3 2 2 0 0

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛, 𝑛 > 1

(The base case 𝑇 1 = 1 can often be omitted.)

So, 𝑇 𝑛 = Θ(𝑛 log𝑛)
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] 𝐴[𝑝. . 𝑞] and 𝐴[𝑞 + 1, 𝑟] are sorted.

Post-condition. [Sort-and-Count] 𝐴[𝑝. . 𝑞] is sorted.

Sort-and-Count(𝐴, 𝑝, 𝑟):

if 𝑝 = 𝑟 then return 0

𝑞 ← (𝑝 + 𝑟)/2

𝑐1 ← Sort-and-Count(𝐴, 𝑝, 𝑞)

𝑐2 ← Sort-and-Count(𝐴, 𝑞 + 1, 𝑟)

𝑐3 ← Merge-and-Count(𝐴, 𝑝, 𝑞, 𝑟)

return 𝑐1 + 𝑐2 + 𝑐3

First call: Sort-and-Count(𝐴, 1, 𝑛)

Merge-and-Count(𝐴, 𝑝, 𝑞, 𝑟):

create two new arrays 𝐿 and 𝑅

𝐿 ← 𝐴[𝑝. . 𝑞],𝑅 ← 𝐴[𝑞 + 1. . 𝑟]

append ∞ at the end of 𝐿 and 𝑅

𝑖 ← 1, 𝑗 ← 1

𝑐 ← 0

for 𝑘 ← 𝑝 to 𝑟

if 𝐿 𝑖 ≤ 𝑅[𝑗] then

𝐴 𝑘 ← 𝐿[𝑖]

𝑖 ← 𝑖 + 1

else

𝐴 𝑘 ← 𝑅[𝑗]

𝑗 ← 𝑗 + 1

𝑐 ← 𝑐 + 𝑞 − 𝑝 − 𝑖 + 2


