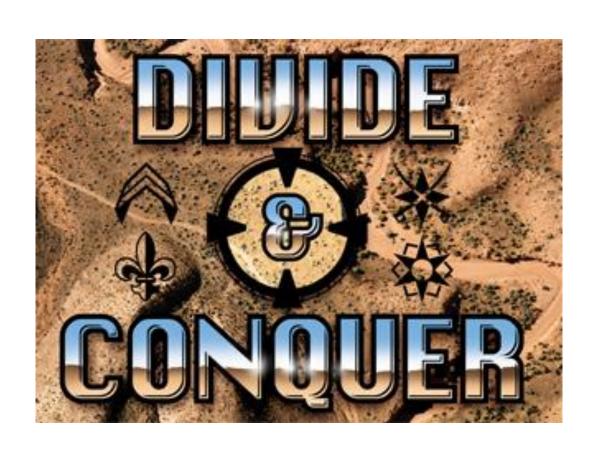
Lecture 2: Merge sort



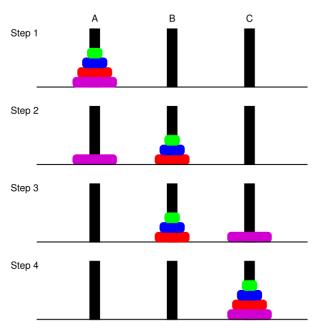
A quick review of recursion and recurrences

Classical example: Tower of Hanoi

Goal: Move n discs from peg A to peg C

- One disc at a time
- Can't put a larger disc on top of a smaller one

MoveTower(n, peg1, peg2, peg3): if n = 1 then move the only disc from peg1 to peg3 return else MoveTower(n-1, peg1, peg3, peg2) move the only disc from peg1 to peg3 MoveTower(n-1, peg2, peg1, peg3) First call: MoveTower(n,A,B,C)



Keys things to remember:

- Reduce a problem to the same problem, but with a smaller size
- The base case

Analyzing a recursive algorithm with recurrence

Q: How many steps (movement of discs) are needed?

Analysis: Let T(n) be the number of steps needed for n discs.

From the recursive algorithm, we have

$$T(n) = 2T(n-1) + 1,$$
 $n > 1$
 $T(1) = 1$

Solving the recurrence by the expansion method:

$$T(n) = 2T(n-1) + 1$$

$$= 2(2(T(n-2) + 1) + 1)$$

$$= 2^{2}T(n-2) + 2 + 1$$

$$= 2^{2}(2T(n-3) + 1) + 2 + 1$$

$$= 2^{3}T(n-3) + 2^{2} + 2 + 1$$

$$= \cdots$$

$$= 2^{n-1}T(1) + 2^{n-2} + \cdots + 2^{2} + 2 + 1$$

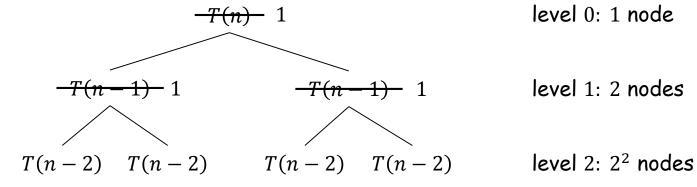
$$= 2^{n-1} + 2^{n-2} + \cdots + 2^{2} + 2 + 1$$

$$= 2^{n} - 1 = \Theta(2^{n})$$

3

Solving recurrences with the recursion tree method

$$T(n) = 2T(n-1) + 1,$$
 $n > 1$
 $T(1) = 1$



level 0: 1 node

level 1: 2 nodes

level $i: 2^i$ nodes

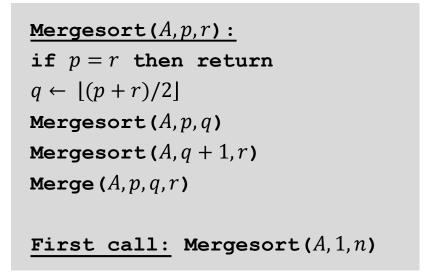
total number of nodes: $1 + 2 + 2^2 + \cdots + 2^{n-1} = 2^n - 1$ level n - 1: 2^{n-1} nodes

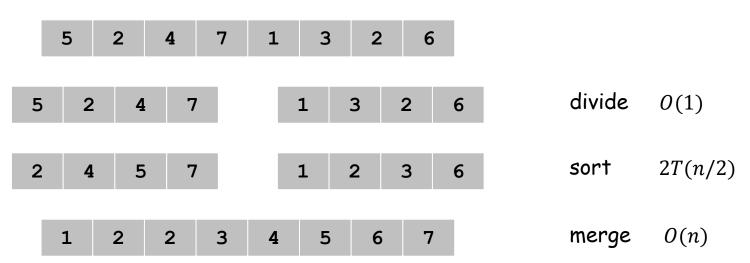
Note: This is actually equivalent to the expansion method, but clearer.

Merge sort

Merge sort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.





Merge

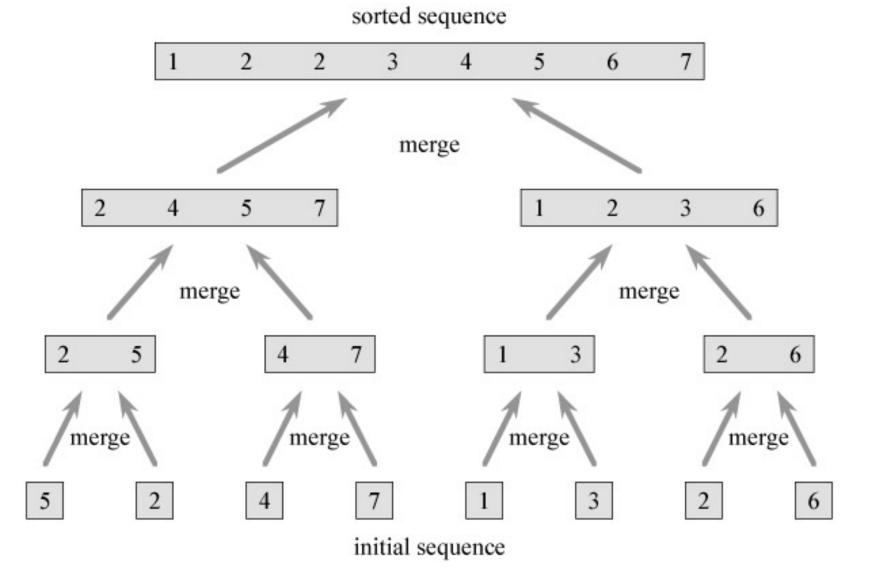
Merge. Combine two sorted lists into a sorted whole.

```
Merge (A, p, q, r):
create two new arrays L and R
L \leftarrow A[p..q], R \leftarrow A[q+1..r]
append \infty at the end of L and R
i \leftarrow 1, j \leftarrow 1
for k \leftarrow p to r
       if L[i] \leq R[j] then
             A[k] \leftarrow L[i]
             i \leftarrow i + 1
       else
             A[k] \leftarrow R[j]
             j \leftarrow j + 1
```

Merge: Example

Merge: Example

Merge sort: Complete example



Analyzing merge sort

Def. let T(n) be the running time of the algorithm on an array of size n.

Merge sort recurrence.

$$T(n) \le T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n), \qquad n > 1$$

 $T(1) = O(1)$

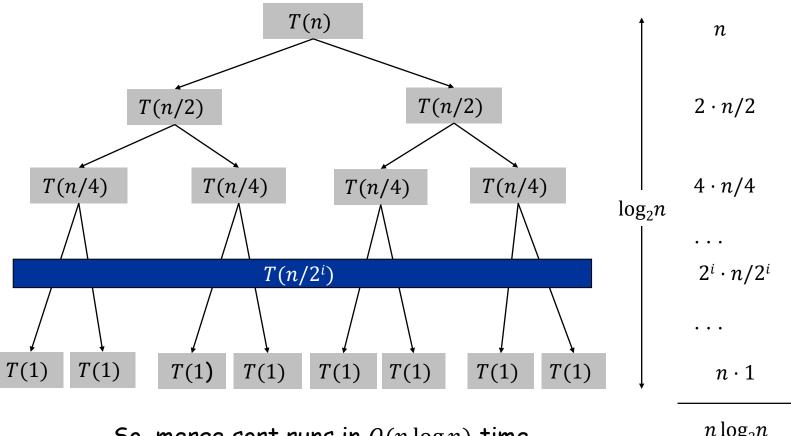
A few simplifications

- Replace \leq with =
 - since we are interested in an big-Oh upper bound of T(n)
- Replace O(n) with n, replace O(1) with 1
 - since we are interested in an big-Oh upper bound of T(n)
- Assume n is a power of 2, so that we can ignore $\lfloor \ \rfloor$, $\lceil \ \rceil$
 - since we are interested in an big-Oh upper bound of T(n)
 - for any n, let n' be the smallest power of 2 such that $n' \ge n$, then $T(n) \le T(n') \le T(2n) = O(T(n))$, as long as T(n) is a polynomial function.

Solve the recurrence

Simplified merge sort recurrence.

$$T(n) = 2T(n/2) + n,$$
 $n > 1$
 $T(1) = 1$



So, merge sort runs in $O(n \log n)$ time.

 $n \log_2 n$

Running time of merge sort

Q: Is the running time of merge sort also $\Omega(n \log n)$?

A: Yes, the worst-case input is when the array is reversely sorted

A: Actually, the running time is the same no matter what the input is

- Or equivalently speaking, every input is the worst case.
- lacktriangle The whole analysis holds if we replace every O with Ω

Theorem: Merge sort runs in time $\Theta(n \log n)$.

Inversion Number

Def:

- Given array A[1..n], two elements A[i] and A[j] are inverted if i < j but A[i] > A[j].
- ullet The inversion number of A is the number of inverted pairs.

A useful measure for:

- How "sorted" an array is
- The similarity between two rankings

Songs

	Α	В	С	D	Е
Me	1	2	3	4	5
You	1	3	4	2	5

Inversions 3-2, 4-2

Relation to bubble sort

1st Pass:
$$(41825) \rightarrow (14825) \rightarrow (14285) \rightarrow (14258)$$

inversion #: 4 3 2 1

$$2^{nd}$$
 Pass: $(14258) \rightarrow (12458)$

Theorem: The number of swaps used by bubble sort is equal to the inversion number.

Proof: Every swap decreases the inversion number by 1.

Observation: The same holds for insertion sort using swaps.

Q: How to compute the inversion number?

Algorithm 1: Check all $\Theta(n^2)$ pairs.

Algorithm 2: Run bubble sort and count the number of swaps - $\Theta(n^2)$ time, too.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: divide array into two halves.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

5 blue-blue inversions

8 green-green inversions

9 blue-green inversions Combine: ??? 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole to maintain the sortedness invariant.

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Count: $\Theta(n)$

2 3 7 10 11 14 16 17 18 19 23 25 Merge:
$$\Theta(n)$$

$$T(n) = 2T(n/2) + n, n > 1$$

(The base case T(1) = 1 can often be omitted.)

So,
$$T(n) = \Theta(n \log n)$$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A[p..q] and A[q+1,r] are sorted.

Post-condition. [Sort-and-Count] A[p..q] is sorted.

```
Sort-and-Count (A, p, r):

if p = r then return 0
q \leftarrow \lfloor (p+r)/2 \rfloor
c_1 \leftarrow \text{Sort-and-Count}(A, p, q)
c_2 \leftarrow \text{Sort-and-Count}(A, q+1, r)
c_3 \leftarrow \text{Merge-and-Count}(A, p, q, r)
return c_1 + c_2 + c_3

First call: Sort-and-Count (A, 1, n)
```

```
Merge-and-Count (A, p, q, r):
create two new arrays L and R
L \leftarrow A[p..q], R \leftarrow A[q+1..r]
append \infty at the end of L and R
i \leftarrow 1, i \leftarrow 1
c \leftarrow 0
for k \leftarrow p to r
       if L[i] \leq R[j] then
             A[k] \leftarrow L[i]
              i \leftarrow i + 1
       else
             A[k] \leftarrow R[i]
             i \leftarrow i + 1
              c \leftarrow c + q - p - i + 2
```