
COMP 3711 Design and Analysis of Algorithms

Lecture 1: Introduction
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So, where are we so far?
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COMP 3711: 
Algorithms

COMP 2011:
C++ Programming

COMP 2711:
Discrete Math

COMP 2012:
OOP and Data structures

COMP 1021/1022P/1022Q:
Intro to Computing

Advanced Topics:
Database, Networking, Graphics, AI, Data Mining, Machine Learning, … 

COMP 3111:
Software Engineering



Course Organization

Lectures: Wed & Fri 3-4:20pm (L2), 4:30-5:50pm (L1).

Textbook:

 (Required) T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to 

Algorithms, Third Edition, MIT Press.

– Library has e-version

 (Reference) Jon Kleinberg and Éva Tardos. Algorithm Design, Addison-

Wesley.

Tutorials:

 Starting from week 2.

 All sections in the same week cover the same topics.

Grading:

 4 Written assignments: 5% * 4 = 20%

 4 Programming assignments: optional, each one carries 1% extra credit

 Midterm exam: 30%

 Final exam: 50%
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http://mitpress.mit.edu/algorithms/
http://www.aw-bc.com/info/kleinberg/


What is an Algorithm?

Definition: An algorithm is an explicit, precise, unambiguous, mechanically-

executable sequence of elementary instructions.

Example: How to sing “5 little monkeys jumping on the bed”
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for 𝑛 ← 5 downto 1

sing “𝑛 little monkeys jumping on the bed.”

if 𝑛 = 1 then sing “He fell off and bumped his head.”

else sing “One fell off and bumped his head.”

sing “Mama called the doctor and the doctor said,”

sing “No more monkeys jumping on the bed!”



Adding Two Numbers

Input: Two numbers 𝑥 and 𝑦 (potentially very long), each consisting of 𝑛

digits: 𝑥 = 𝑥𝑛𝑥𝑛−1…𝑥1, 𝑦 = 𝑦𝑛𝑦𝑛−1…𝑦1

Output: A number 𝑧 = 𝑧𝑛+1𝑧𝑛…𝑧1, such that 𝑧 = 𝑥 + 𝑦.
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𝑐 ← 0

for 𝑖 ← 1 to 𝑛

𝑧𝑖 ← 𝑥𝑖 + 𝑦𝑖 + 𝑐

if 𝑧𝑖 ≥ 10 then 𝑐 ← 1, 𝑧𝑖 ← 𝑧𝑖 − 10

else 𝑐 ← 0

𝑧𝑛+1 ← 𝑐

529501233

+612345678

1241846911 



This is NOT an algorithm

Problem: How to pass COMP 3711.

 Contains ambiguous instructions

 Not (always) correct
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don’t go to lectures

copy other students’ homework

give best shot at the exam

if score > cutoff then

say “yippee!”

else

cry and beg the instructor



The First Algorithm: Bubble Sort

Input: An array 𝐴[1…𝑛] of elements

Output: Array 𝐴[1…𝑛] of elements in sorted order (ascending)

1st Pass: ( 4 1 8 2 5 ) → ( 1 4 8 2 5 ) → ( 1 4 2 8 5 ) → ( 1 4 2 5 8 )

2nd Pass: ( 1 4 2 5 8 ) → ( 1 2 4 5 8 )

3rd Pass: No swaps, thus terminate
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Bubble-Sort(𝐴):

repeat

𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← false

for 𝑖 ← 1 to 𝑛 − 1

if 𝐴 𝑖 > 𝐴[𝑖 + 1] then

swap 𝐴[𝑖] and 𝐴[𝑖 + 1]

𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← true

until not 𝑠𝑤𝑎𝑝𝑝𝑒𝑑



Correctness of bubble sort

Claim: When bubble sort terminates, the array must be sorted.

Proof: Trivial.

Claim: Bubble sort terminates after at most 𝑛 − 1 passes.

Proof:

 After the 1st pass, the largest element must be at 𝐴[𝑛], and it will 

not be swapped any more.

 After the 2nd pass, the 2nd largest element must be at 𝐴[𝑛 − 1], and 

it will not be swapped any more.

 …

 After the (𝑛 − 1)-th pass, the 2nd smallest element must be at 𝐴[2], 

and the smallest element must be at 𝐴[1].
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The First (Reasonably) Good Sorting Algorithm

Input: An array 𝐴[1…𝑛] of elements

Output: Array 𝐴[1…𝑛] of elements in sorted order (ascending)

Correctness: Each iteration of the outer loop finds the right position 

to put “key”.

Termination: Obvious
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Insertion-Sort(𝐴):

for 𝑗 ← 2 to 𝑛 do

𝑘𝑒𝑦 ← 𝐴[𝑗]

𝑖 ← 𝑗 − 1

while 𝑖 ≥ 1 and 𝐴[𝑖] > 𝑘𝑒𝑦 do

𝐴[𝑖 + 1] ← 𝐴[𝑖]

𝑖 ← 𝑖 − 1

𝐴 𝑖 + 1 ← 𝑘𝑒𝑦

sorted key unsorted



Insertion Sort: Example

1st iteration:

 ( 4 1 8 2 5 ) → ( 4 4 8 2 5 ) → ( 1 4 8 2 5 )

 key = 1

2nd iteration:

 ( 1 4 8 2 5 )

 key = 8

3rd iteration:

 ( 1 4 8 2 5 ) → ( 1 4 8 8 5 ) → ( 1 4 4 8 5 ) → ( 1 2 4 8 5 )

 key = 2

4th iteration:

 ( 1 2 4 8 5 ) → ( 1 2 4 8 8 ) → ( 1 2 4 5 8 )

 key = 5
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Bubble Sort vs Insertion Sort

Memory

 Both operate directly on the input array 𝐴 (in-place algorithm)

 Both require 3 extra variables (working memory)

Running time?

Rewriting the insertion sort algorithm:
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Insertion-Sort(𝐴):

for 𝑗 ← 2 to 𝑛 do

𝑘𝑒𝑦 ← 𝐴[𝑗]

𝑖 ← 𝑗 − 1

while 𝑖 ≥ 1 and 𝐴[𝑖] > 𝑘𝑒𝑦 do

𝐴[𝑖 + 1] ← 𝐴[𝑖]

𝑖 ← 𝑖 − 1

𝐴 𝑖 + 1 ← 𝑘𝑒𝑦

Insertion-Sort-Using-Swaps(𝐴):

for 𝑗 ← 2 to 𝑛 do

𝑖 ← 𝑗 − 1

while 𝑖 ≥ 1 and 𝐴[𝑖] > 𝐴[𝑖 + 1] do

swap 𝐴[𝑖] and 𝐴[𝑖 + 1]

𝑖 ← 𝑖 − 1



Bubble Sort vs Insertion Sort

Theorem: On any input, Insertion-Sort-Using-Swaps uses exactly 

the same number of swaps as bubble sort. 

Proof: Later (relates to “inversion number”).

Observations:

 Each swap is implemented as 3 assignments:

– 𝑥 ← 𝐴 𝑖 ; 𝐴 𝑖 ← 𝐴 𝑗 ; 𝐴 𝑗 ← 𝑥

 Insertion sort essentially implements a series of swaps more 

efficiently:

Conclusion: Insertion sort is always better than bubble sort.
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key



Wild-Guess Sort

Input: An array 𝐴[1…𝑛] of elements

Output: Array 𝐴[1…𝑛] of elements in sorted order (ascending)

Q: Is wild-guess sort faster than insertion sort?

A: Yes, when the input exactly agrees with the guess.

A: But for all other inputs, it is slower.
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Wild-Guess-Sort(𝐴):

𝜋 ← [4, 7, 1, 3, 8, 11, 5, … ]

check if 𝐴 𝜋 𝑖 ≤ 𝐴 𝜋 𝑖 + 1 for all 𝑖 = 1, 2, … , 𝑛 − 1

if yes, output 𝐴 according to 𝜋 and terminate

else Insertion-Sort(𝐴)



How to evaluate an algorithm / compare two algorithms?

What to measure?

 Memory (space complexity)

– total space

– working space (excluding the space for holding inputs)

 Running time (time complexity)

How to measure?

 Empirical – depends on actual implementation, hardware, etc.

 Analytical – depends only on the algorithms, focus of this course

Comparing two algorithms is no simple matter!

 Depends on the input, especially the input size 𝑛

 Depends on what operations to measure

 Calculating the exact number of instructions executed is very 

difficult or even impossible

Very rarely (and difficult) can we draw conclusions like “insertion sort 

is always better than bubble sort”
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Measuring Running Time

We will

 measure running time as the number of machine instructions

 measure running time as a function of input size: 𝑇(𝑛)

 use asymptotic notation

 use worst-case analysis

Which algorithm is better for large 𝑛?

 For Algorithm 1, 𝑇 𝑛 = 3𝑛3 + 6𝑛2 − 4𝑛 + 17 = Θ(𝑛3)

 For Algorithm 2, 𝑇 𝑛 = 7𝑛2 − 8𝑛 + 20 = Θ(𝑛2)

 Clearly, Algorithm 2 is better

15



Asymptotic Notation

Upper bounds.  𝑇 𝑛 = 𝑂(𝑓(𝑛)) if there exist constants 𝑐 > 0 and 𝑛0  0

such that for all 𝑛  𝑛0, we have 𝑇 𝑛 ≤ 𝑐 · 𝑓(𝑛).

Equivalent definition: lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
< ∞ .

Lower bounds.  𝑇 𝑛 = (𝑓(𝑛)) if there exist constants 𝑐 > 0 and 𝑛0  0

such that for all 𝑛  𝑛0, we have 𝑇 𝑛 ≥ 𝑐 · 𝑓(𝑛).

Equivalent definition: lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
> 0 .

Tight bounds.  𝑇 𝑛 = (𝑓(𝑛)) if 𝑇 𝑛 = 𝑂(𝑓(𝑛)) and 𝑇 𝑛 = (𝑓(𝑛)).

Note: Here “=” means “is”, not equal. The more mathematically correct 

way should be 𝑇 𝑛 ∈ 𝑂 𝑓 𝑛 .

Example: 𝑇 𝑛 = 32𝑛2 + 17𝑛 − 32.

 𝑇(𝑛) is 𝑂(𝑛2), 𝑂(𝑛3),(𝑛2),(𝑛), and(𝑛2).

 𝑇(𝑛) is not 𝑂(𝑛), Ω(𝑛3),(𝑛), or(𝑛3).
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Asymptotic notation: More examples

 log10 𝑛 =
log2 𝑛

log2 10
= Θ(log2 𝑛) = Θ(log𝑛)

 99999999
9999

= Θ 1

 the number of 1’s in the binary representation of 𝑛 = 𝑂(log𝑛) , Ω(1)

 210𝑛 is not 𝑂 2𝑛

  𝑖=1
𝑛 𝑖 ≤ 𝑛 ⋅ 𝑛 = 𝑂 𝑛2 ,  𝑖=1

𝑛 𝑖 ≥
𝑛

2
⋅
𝑛

2
= Ω 𝑛2

  𝑖=1
𝑛 𝑖2 ≤ 𝑛2 ⋅ 𝑛 = 𝑂 𝑛3 ,  𝑖=1

𝑛 𝑖 ≥
𝑛

2

2
⋅
𝑛

2
= Ω 𝑛3

  𝑖=1
𝑛 𝑐𝑖 =

𝑐𝑛−1

𝑐−1
=  

Θ 𝑐𝑛 , 𝑐 > 1
Θ 𝑛 , 𝑐 = 1
Θ 1 , 𝑐 < 1

(geometric series)

 log 𝑛! = log 𝑛 + log 𝑛 − 1 +⋯+ log1 = 𝑂 𝑛 log𝑛

log 𝑛! ≥ log 𝑛 + log 𝑛 − 1 +⋯+ log 𝑛/2 = Ω(𝑛 log𝑛)
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Asymptotic notation: More examples

  𝑖=1
𝑛 1

𝑖
= Θ log 𝑛 (harmonic series, derivation on board)

 log10 𝑛 = 𝑂 𝑛0.1 , 𝑛100 = 𝑂 2𝑛 , loglog 𝑛 = 𝑂 log 𝑛

 𝑛 log𝑛 =𝑂
𝑛2

log 𝑛

 𝑛0.1 + log10 𝑛 = Θ 𝑛0.1

 𝑓 𝑛 + 𝑔 𝑛 = Θ max 𝑓 𝑛 , 𝑔 𝑛
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Best-Case Analysis

Best case: An instance for a given size 𝑛 that results in the fastest 

possible running time.

Example (insertion sort): Input already sorted 
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for 𝑗 ← 2 to 𝑛 do

𝑘𝑒𝑦 ← 𝐴[𝑗]

𝑖 ← 𝑗 − 1

while 𝑖 ≥ 1 and 𝐴[𝑖] > 𝑘𝑒𝑦 do

𝐴[𝑖 + 1] ← 𝐴[𝑖]

𝑖 ← 𝑖 − 1

𝐴 𝑖 + 1 ← 𝑘𝑒𝑦

sorted key unsorted

“key” is compared to only the element right before it, so 𝑇 𝑛 = Θ(𝑛).



Worst-Case Analysis

Worst case: An instance for a given size 𝑛 that results in the slowest 

possible running time.

Example (insertion sort): Input inversely sorted 
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for 𝑗 ← 2 to 𝑛 do

𝑘𝑒𝑦 ← 𝐴[𝑗]

𝑖 ← 𝑗 − 1

while 𝑖 ≥ 1 and 𝐴[𝑖] > 𝑘𝑒𝑦 do

𝐴[𝑖 + 1] ← 𝐴[𝑖]

𝑖 ← 𝑖 − 1

𝐴 𝑖 + 1 ← 𝑘𝑒𝑦

sorted key unsorted

“key” is compared to every element before it, so 𝑇 𝑛 = Θ  𝑖=2
𝑛 𝑖 = Θ(𝑛2).



Average-Case Analysis

Average case: Running time averaged over all possible instances for the 

given size, assuming some probability distribution on the instances.

Example (insertion sort): assuming that each of the 𝑛! permutations of 

the 𝑛 numbers is equally likely

Rigorous analysis is complicated, but intuitive, “key” is compared to half 

of the elements before it on average, so 

𝑇 𝑛 = Θ  

𝑖=2

𝑛
𝑖

2
= Θ 𝑛2
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sorted key unsorted



Three Kinds of Analyses

Best case: Clearly useless

Worst case: Commonly used, will also be used in this course

 Gives a running time guarantee no matter what the input is

 Fair comparison among different algorithms

 Not perfect: For some problems, the worst-case input never 

occurs in real life; some algorithms with bad worst-case running 

time actually work very well in practice (e.g. the simplex 

algorithm for linear programming)

 Worst-case analysis will be the default

Average case: Used sometimes

 Need to assume some distribution: real-world inputs are seldom 

uniformly random!

 Analysis is complicated

 Will see one example later
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More on Worst-Case Analysis

What does each of these statements mean?

The algorithm’s running time is 𝑂(𝑛2)

 On any input, the algorithm’s running time is 𝑂(𝑛2)

 Further expanded: There exist constants 𝑐 > 0, 𝑛0 ≥ 0, such that 

for any 𝑛 ≥ 𝑛0 and any input of size 𝑛, the algorithm’s running 

time is ≤ 𝑐 ⋅ 𝑛2.

 Implication 1: No need to really find the worst input.

 Implication 2: No need to consider input of size smaller than a 

constant 𝑛0.

The algorithm’s running time is Ω(𝑛2)

 There exist constants 𝑐 > 0, 𝑛0 ≥ 0, such that for any 𝑛 ≥ 𝑛0, 

there exists some input of size 𝑛 on which the algorithm’s running 

time is ≥ 𝑐 ⋅ 𝑛2.

 Mainly used to show that the big-Oh analysis is tight (i.e., the 

best possible upper bound); often not required.
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Theoretical analysis may not be accurate enough

Example: Bubble sort, insertion sort, and wild-guess sort all have 

running time Θ(𝑛2)

Lose information due to

 Asymptotic notation suppresses constant difference

 Worst-case analysis ignores other inputs

But, theoretical analysis provides the first guideline

 Useful when you don’t know what inputs you are to get

 An Θ(𝑛 log 𝑛) algorithm is always better than an Θ(𝑛2) algorithm, for 

inputs large enough (there are some exceptions, though)

– Will see several Θ 𝑛 log𝑛 sorting algorithms later

When algorithms have the same theoretical running time

 Closer examination of hidden constants

 Careful analysis of typical inputs expected

 Other factors such as cache efficiency, parallelization

 Empirical comparison
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Writing down algorithms in pseudocode

 Use standard keywords (if/then/else, while, for, repeat/until, 

return) and notation: variable ← value, Array[index], 

function(arguments), etc.

 Indent everything carefully and consistently; may also use { } for 

better clarity.

 Use standard mathematical notation. For example, write 𝑥 · 𝑦 instead of 

𝑥 ∗ 𝑦 for multiplication; write 𝑥 mod 𝑦 instead of 𝑥 % 𝑦 for remainder; 

write 𝑥 instead of 𝑠𝑞𝑟𝑡(𝑥) for square roots; write 𝑎𝑏 instead of 

𝑝𝑜𝑤𝑒𝑟(𝑎, 𝑏) for exponentiation; use = for equality test.

 Use data structures as black boxes. If the data structure is new, 

define its functionality first; then describe how to implement each 

operation.

 Use standard/learned algorithms (e.g. sorting) as black boxes.

 Use functions to decompose complex algorithms.

 Use language when it’s clearer or simpler (e.g., if 𝐴 is an array, you may 

write “𝑥 ← the maximum element in 𝐴”).
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