
This chapters examines deadlock, which is a problem arising in a system with
multiple active asynchronous processes. There are three basic approaches to deal with
deadlock: prevention, avoidance, and detection (although the terms prevention and
avoidance can be confusing).

The Deadlock
• A deadlock occurs when two or more processes are waiting indefinitely for an

event that can be caused only by one of the waiting processes. This can occur
when there are a set of blocked processes in that each process holding a resource
while waiting to acquire a resource held by another process in the set.

• If there is a deadlock in the system, the following four necessary conditions must
hold simultaneously: mutual exclusion, hold and wait, no preemption, and
circular wait. Therefore, to prevent deadlocks from happening, we need to ensure
that one of the necessary conditions does not hold.

• Resource-Allocation Graph describes the current resource allocation to all
processes. This, along with the future requests of resources from processes and the
available resources that system possesses, represents the resource allocation and
requirements in a system.

• In general, we do not know the sufficient conditions for a deadlock to occur
except in the case where all resources have only one instance, in which the
circular wait (cycle in the Resource-Allocation Graph), will lead to the deadlock.

Deadlock Avoidance
• This requires that the OS has prior knowledge on how each process will utilize

system resources. The simple and most common model requires that each process
declare the maximum number of resources of each type (the maximum demand)
that the process may need throughout its entire execution.

• A resource-allocation state is defined by three pieces of information, the number
of available resources (a vector of m types), the number of allocated resources
(NxM matrix), and the maximum demands of all processes (NxM matrix)

• The deadlock-avoidance algorithm dynamically examines the resource-allocation
state to ensure that there can never be a circular-wait condition, such that a
deadlock would never occur.

The Banker’s Algorithm
• For a given resource allocation graph, the sequence <P1, P2, …, Pn> is said to be

safe if for each Pi, the resources that Pi requires (maximum need) can be satisfied
by currently available resources in the system plus the resources held by all the Pj,
where j<i. This implies that the currently available resources can satisfy the need
for P1, P2 can be satisfied by the currently available resources and the resources
hold by P1, and so on and so forth. The safe sequence is not unique.

• System is in safe state if there exists a safe sequence containing all processes.
• The banker’s algorithm checks to see if the system is in a safe state.

Deadlock Detection
• An algorithm similar to the banker’s algorithm can be used to find out whether the

current state is safe or not. The difference is to use request vector instead of need
vector (i.e., need + allocation = maximum in the original Banker’s algorithm).

• The primary question is when and how often the detection algorithm should be
invoked, which has to take into account the frequency of deadlock occurrence and
the number of processes involved in a deadlock.

Recovery from Deadlock
• Process termination: abort all processes or abort one process (how to select?).
• Resource preemption: how to select a victim, determine the rollback (return to

some safe state and restart the process), and consider possible starvation.

