

This chapter examines the cooperating processes, in which their executions are
potentially affected by other processes executing in system concurrently. Cooperating
processes can either directly share a logical space (that is, code or data) achieved
through the use of threads, or be allowed to share data through files or messages.
Concurrent access to share data may result in data inconsistency. This chapter
discusses various mechanisms to ensure the orderly execution of cooperating
processes.

The Critical Section Problem
• When concurrent processes or threads access shared data, certain mechanisms are

needed to ensure data consistency.
• A Race Condition is a situation where several processes access and manipulate a

shared data concurrently and the outcome of the executions depends on the
particular order in which the accesses or executions take place. This is apparently
undesirable.

• The Critical Section (CS) is a segment of code (can be short or long), in which a
process may change shared variables such as updating a table, writing a file and so
on. The operating system has to ensure that no more than one process can execute
inside the Critical Section at any given time – mutual exclusion.

• A solution to the Critical Section problem must guarantee three conditions:
mutual exclusion, progress and bounded waiting. Usually it is easier to verify
that a solution can ensure the mutual exclusion, but less obvious to guarantee the
other two conditions.

Atomic Operation
• The root of the problem in Race Condition is that the instructions (e.g., count++

and count--) are high-level language instructions, after being translated into
multiple machine-level instructions (or assembly code as shown), the instructions
can be interleaved arbitrarily during the execution.

• The atomic operations (uninterruptable) such as test_and_set() are designed to
ensure mutual exclusions when they are executed. These operations are
OS-specific instructions. For instance, even if two test_and_set() instructions are
executed simultaneously on a different CPU, they will be forced to execute
sequentially in certain order without being interleaved.

• Software tools using mutex lock with acquire() and release() operations, which
must also be atomic. One problem is busy waiting (waste CPU cycles), which
might also exist in test_and_set().

• Spinlock (busy waiting) has one major advantage in that no context switch occurs.
The context switch may take considerable time. Thus, when locks are expected to
be held for only a short period of time, spinlocks become useful, esp. in a
multiprocessor system, in which one thread can “spin” on one processor, another
thread performs its critical section on another processor.

Semaphores
• A semaphore is an integer variable that, apart from the initialization, can only be

accessed through two atomic operations:	
 wait() and signal(), also called P() and V()
operations.

• Definition of the operations: wait() tests the integer value S, if it is non-positive, it
waits (busy waiting), otherwise S--. signal() increments S; note that both are
atomic operations that are uninterruptible..

• A binary semaphore can only have two values, 0 or 1. It is usually used
equivalently as a mutex lock, but also can be used for other synchronization.

• A counting semaphore can range over an unrestricted domain (any integer),
which can be used to control access to resources with multiple instances.

• The implementation of wait() and signal() can remove the busy waiting. A process
blocks itself when it calls wait() on a semaphore when S<=0, and it wakes up later
when S is incremented by signal(). The implementation of a semaphore with a
waiting queue may result in a deadlock or indefinite blocking or starvation.

• Priority Inversion – a scheduling problem with more than two priorities. When a
lower-priority process (L) holds a lock needed by a higher-priority process (H),
and the lower-priority process can be preempted by another higher-priority
process (M<H), which will affect the waiting time of process H. This can be
solved via a priority-inheritance protocol in that all processes that are accessing
resources needed by a higher-priority process inherits the higher priority until they
are finished with the resources in question.

The Bounded-Buffer Problem
• The pool consists of n buffers, each capable of holding one item. The mutex

semaphore (initialized to 1) provides mutual exclusion for accesses to the buffer
pool. The empty and full semaphores count the number of empty and full buffers
(initialized to the values of n and 0, respectively).

Readers-Writers Problem
• There are many variations to this problem. The example discussed is referred as

the first readers-writers problem, which ensures that no readers is kept waiting
unless a writer has already gained access to the shared object. This essentially
gives readers higher priority, yet some time this might not be desired.

• The mutex semaphore is used to ensure mutual exclusion among readers when the
variable read_count is updated. The read_count keeps track of the number of
readers that are currently reading the object or waiting to access the shared object.
The rw_mutex semaphore is used by a writer process and first or last reader
process to ensure no more than one writer or no mixed reader and writer can
access the object.

• Note that (1) only the first reader does wait(rw_mutex) before entering the critical
section, which ensure no writer can access. Subsequent reader processes can enter
the critical section directly; (2) only the last reader process leaving the critical
section does signal(rw_mutex), so to release the lock of the critical section.

• Also notice that in this example (the first readers-writers problem), if a writer is
accessing the shared object and if there are n readers are waiting, then only the
first reader is queued on the semaphore rw_mutex, and the rest n-­‐1 readers are
queued on semaphore mutex.

Monitor
• Monitor is a high level abstraction or ADT that encapsulates data with a set of

functions that operate on the data. This provides a convenient and richer set of
functionalities for process coordination and synchronization. It only allows one
process to be active within a monitor (mutual exclusion) at any given time.

• It can contain condition variables (for instance, x) with x.wait() and x.signal()
operations. If a process waits on a conditional variable inside a monitor, i.e.,
inside a critical section, the process goes to sleep (blocked state), and it
automatically releases the lock of the monitor, so another process can use the
monitor to enter the critical section.

• The	
 x.wait() and x.signal() operations are somewhat different from the wait() and
signal() operations on semaphores. The x.signal() operation associated with a
monitor is not persistent in the following sense: if a signal is performed and if
there are no waiting threads, the signal is simply ignored and the system does not
remember that the signal ever takes place. If a subsequent wait operation is
performed, the corresponding thread still blocks. In semaphores, on the other hand,
every signal() operation results in a corresponding increment of the semaphore
value even if there are no waiting threads. A future wait operation would
immediately succeed because of the earlier increment.

Synchronization in Solaris
• An adaptive mutex is used for efficiency when protecting data from short-code

critical section segments. On a multiprocessor system, it starts as a standard
semaphore spinlock. (1) If lock is held by a thread running on another CPU, spins;
(2) If lock is held by non-run-state thread, block and sleep waiting for signal of
lock being released.

• A reader-writer lock is used to protect shared data that are accessed frequently
by multiple threads, but usually in a read-only manner. This is more efficient than
semaphores, because it allows multiple threads to read the shared data
concurrently, whereas semaphores always serialize access to the shared data.

