
COMP3511 Fall 2015 Project #2: CPU Scheduling in Nachos

(You are strongly recommended to use the servers in the Lab, the servers are
csl2wk01.cse.ust.hk ~ csl2wk40.cse.ust.hk. SSH is OK for that.)

In this project you will learn how to schedule CPU for threads. You are given a
simple scheduling system skeleton in Nachos and your tasks are:

1. Compile Nachos and run the system with pre-implemented First Come First Serve
CPU scheduling algorithm.

2. Read the code and understand how the given CPU scheduling algorithm is
implemented. Implement one function of required data structure.

3. Implement the Shortest Job First scheduling algorithm (SJF) in Nachos. Recompile
and run the system to test your implementation.

4. Explain the results and answer some questions.

Please don't be overwhelmed by the sheer amount of code provided. In fact you don’t
need to worry about most of it. The parts that you need to read or modify are given in
the following instructions. Please read them carefully, and follow the steps.

Step 1: Download Nachos source code of this project

Step 2: Extract the source code

Step 3: Compile the code

Enter the folder “os2015fall_nachos_ proj2” and then run “make”.

Step 4: Run Nachos

This program was designed to test 2 scheduling algorithms, namely First Come First
Serve (FCFS) and Shortest Job First (SJF). To cover all the cases, we do not run the
executable file 'nachos' directly. Instead, we run 'test0' and 'test1' to test the 2
scheduling algorithms respectively.

For example, you can run 'test0' to test First Come First Serve scheduling algorithm.

Task 1: Run Nachos with Pre-implemented Scheduling
System Skeleton
	

wget http://course.cse.ust.hk/comp3511/project/project2/os2015fall_nachos_proj2.tar.gz

	

tar zxvf os2015fall_nachos_proj2.tar.gz

	

If you succeed in running 'test0', you will see the following messages:

To be concise, we omitted several output lines.

The following table would give very useful information to you.

./test0

First-come first-served scheduling

Starting at Elapesd ticks: total 0

Queuing threads.

Queuing thread threadA at Time 0, willing to burst 20 ticks

Switching from thread "main" to thread "threadA"

threadA, Starting Burst of 20 ticks. Elapesd ticks: total 0

threadA, Still 19 to go. Elapesd ticks: total 1

threadA, Still 18 to go. Elapesd ticks: total 2

threadA, Still 17 to go. Elapesd ticks: total 3

threadA, Still 16 to go. Elapesd ticks: total 4

threadA, Still 15 to go. Elapesd ticks: total 5

threadA, Still 14 to go. Elapesd ticks: total 6

............(We omitted some output here.)............

threadE, Still 0 to go. Elapesd ticks: total 57

threadE, Done with burst. Elapesd ticks: total 57

No threads ready or runnable, and no pending interrupts.

Assuming the program completed.

Machine halting!

Ticks: total 57, idle 0, system 57, user 0

Disk I/O: reads 0, writes 0

Console I/O: reads 0, writes 0

Paging: faults 0

Network I/O: packets received 0, sent 0

Cleaning up...

Executable File Source File Corresponding
Algorithm

Already
Implemented?

test0 test.0.cc FCFS Yes
test1 test.1.cc SJF No

You can run test0 to test the pre-implemented algorithms. However, because SJF
algorithm are not yet implemented, if you run test1 to test it, there will be an error.
You can view the source code of test files in test.0.cc and test.1.cc.

Step 5: Read the code

Please read the code carefully. Try to understand how the given scheduling algorithm
is implemented. You need to focus on threadtest.cc, scheduler.h,
scheduler.cc, list.h, list.cc. Here we provide you some notes about the code.

The CPU scheduling algorithms are mainly implemented in 3 functions:
ReadyToRun(), FindNextToRun(), ShouldISwitch(), in scheduler.cc.

1) ReadyToRun() decides the policy of placing a thread into ready queue (or
multilevel queues, which will not be included in this project) when the thread gets
ready. For example, in FCFS we simply append the thread to the end the ready
queue, while in SJF we insert the threads to the queue according to its CPU burst
time.

2) FindNextToRun() decides the policy of picking one thread to run from the ready
queue. For example, in FCFS scheduling, we fetch the first thread in ready queue to
run.

3) ShouldISwitch() decides whether the running thread should preemptively give
up to a new forked thread. In FCFS scheduling, the running thread does not
preemptively give up its CPU resources. Note that only in preemptive algorithms,
it is needed to decide whether the running thread should give up or not. In other
algorithms, you can simply return false.

In nachos, the threads ready to run are recorded in the ready queue: readyList. It is a
linked list defined in list.cc and list.h. And PrintListSize() in list.cc
can be used for printing the number of threads waiting in the readyList. This function
has not been implemented yet and in this task you are required to implement it. Please
be noted that readyList is a normal linked list.

Below are the steps:

Step 1. Implement the PrintListSize() function in list.cc under thread
folder.

Step 2: Enter the folder “os2015fall_nachos_ proj2”, run “make clean” and then
“make” to recompile the code

Step 3: Run test0 and record the output in proj2_test0.txt

If you succeed in running 'test0', you will see the following messages:

Task 2: Implement PrintListSize() function of list	

First-come first-served scheduling

Starting at Elapesd ticks: total 0

Queuing threads.

Queuing thread threadA at Time 0, willing to burst 20 ticks

Currently there are 1 items in ReadyList

Switching from thread "main" to thread "threadA"

threadA, Starting Burst of 20 ticks. Elapesd ticks: total 0

............(We omitted the other output here.)............

./test0 > project2_test0.txt

In this task, you are required to implement the remaining scheduling algorithms
Shortest Job First (Non-preemptive), and then test your implementation. To achieve
this, you needn’t modify any source file other than scheduler.cc. You are
supposed to add some code in the following three functions in scheduler.cc:
ReadyToRun(), FindNextToRun() and ShouldISwitch().

Note: Be very careful of cases in switch block(s) in each of those functions.
Make sure you put your code in the right place.

Since you have to operate one or more Lists, you could refer to list.h and
list.cc to get familiar with List operations. Please make good use of appropriate
List operations, and the crucial requirement of this project for you is to understand
and experiment with different scheduling algorithms instead of coding itself, so the
coding part is actually relatively easy.

You are supposed to add some code with respect to SJF algorithm in case
SCHED_SJF in each function in scheduler.cc. In SJF algorithm, the thread with the
shortest burst time in the ReadyList should be scheduled for running after the current
thread is done with burst. If there are more than one threads with the same shortest
burst time in the ReadyList, they must be scheduled in FCFS manner.

Some notes are given to you:

1. The burst time of a thread is an integer greater than 0. The burst time of a thread
can be obtained by the function getBurstTime() defined in the class thread.

2. Do NOT use the function setBurstTime() to change the burst time of the thread
dynamically in your own code.

3. You can insert the thread to ReadyList according to its burst time when a thread
gets ready. Therefore, it can be guaranteed that the first thread in ReadyList is the
thread with the shortest burst time.

4. Similarly with FCFS, after a thread is scheduled you should output the number of
threads in readyList.

Then you should run “make clean” and then “make” to recompile the code and run
test1 to check the output. (The first command is for you to view and the second is to
record the result in the file project2_test1.txt.

Task 3: Implement SJF Scheduling Algorithms	

./test1 > project2_test1.txt

1. Understand the output of test0 (FCFS scheduling), test1 (SJF scheduling). Then
calculate the following performance of both the two scheduling algorithms:

1) Average waiting time;

2) Response time;

3) Turn-around time.

2. Compare the performance of the two scheduling algorithms FCFS and SJF in the
aspects mentioned in question 1, then discuss the pros and cons of each of the two
scheduling algorithms. (Note: you are strongly encouraged to change the input
threads in test.0.cc and test.1.cc in order to make your discussion more
convincing. However, when submitting the outputs of test0 and test1, please do
submit the outputs with the original input threads.)

Please write your answers in project2_report.txt

1) Please generate a single file using ZIP and submit it through CASS.

2) The name of the ZIP file should be “proj2_********.zip”, using your student ID
to replace the star symbols.

3) The following files should be included inside the ZIP file:

File Name Description

list.cc

scheduler.cc

Source code you have accomplished
by the end of Task3

project2_test0.txt Output of test0 in Task2

project2_test1.txt Output of test1

project2_report.txt The answer to the questions in Task 4

Task 4: Explain the Results	

After Finishing These Tasks	

