COMP3511 Project #1: Nachos and Thread

In this project you will learn how to create threads in Nachos. You are given a simple thread system
for Nachos. Your tasks are:

1. Compile Nachos and run the system.

2. Add some lines to the Nachos code. Recompile and run it.

3. Add several specified lines in the Nachos code. Recompile and run it.
4. Save the output and explain the results.

Don't be overwhelmed by the sheer amount of code provided. In fact you don’t need to care about
most of it. The part that you need to read or modify will be given in this instruction.

Task 1: Running Nachos with pre-implemented semaphore
Step 1: download Nachos source code, with pre-implemented semaphore.

wget http://course.cse.ust.hk/comp3511/project/projectl/os_nachos_projl.tar.gz

Step 2: Extract the source code.

tar -zxvf os_nachos_projl.tar.gz

Step 3: Compile the code
Enter the folder “os_nachos_ proj1” and then run “make”

Step 4: Run nachos

Enter the folder “os_nachos_ proj1” and then run “./nachos”

In this program, Nachos creates one thread, which does nothing except telling us its name
“Threadl” and its termination.

If you succeed in running nachos, you will see these messages:

Hello, my name is Thread1

Threadl ends

No threads ready or runnable, and no pending interrupts.
Assuming the program completed.

Machine halting!

Ticks: total 30, idle 0, system 30, user 0
Disk I/O: reads 0, writes O

Console I/O: reads 0, writes O

Paging: faults O

Network I/O: packets received 0, sent 0

Cleaning up...

Step 5: Save the output to file

./nachos > projectl_outputl.txt

This command runs Nachos and saves the output to file projectl_outputl.txt

Keep the file projectl_outputl.txt for grading.

Task 2: Adding codes to Nachos

Open file os_nachos_ projl/threads/projectl.cc. All the code you need to write is in this file.
There are 4 functions in the file. running_for_calculation(), latter_thread(), prior_thread() and
project1(). Do NOT modify the function running_for_calculation().

Your work is to add your code in function latter_thread(), prior_thread() and

projectl(). Nachos will automatically invoke project1(). Your tasks are:

Step 1:

In Thread1 (i.e. function prior_thread()), invoke function running_for_calculation() to perform
certain number of calculations specified by the parameter “arg” . Before the function
running_for_calculation() is invoked, output the information which claims that Thread1 will
perform calculation for “arg” * 10000 times.

Step 2:
Create second thread called Thread2. This thread invokes function latter_thread ().

Step 3:

In Thread2 (i.e. function latter_thread()), invoke function running_for_calculation() to perform
certain number of calculations specified by the parameter “arg” . Before the function
running_for_calculation() is invoked, output the information which claims that Thread2 will
perform calculation for “arg” * 10000 times.

Don't know what to do? Here are some instructions that may be helpful.
1. How to create threads in Nachos?
First, you need to define a Thread object, then invoke Fork():

Thread *th1 = new Thread("Thread1");
th1->Fork(prior_thread, 5);

A thread named "Thread1" will be created, and it invokes prior_thread as its working thread
function. The working thread function must have a parameter of int type. e.g. prior_thread()
function has a "int arg" parameter. The second line invokes the working thread function and
passes the value 5 to the parameter.

Note: Do NOT define the object like "Thread th1("Thread1")". This will cause Nachos to crash.
2. How to get the name of a thread in Nachos?

currentThread->getName();

This function returns the name (pointer of char *) of current thread.

3. About running_for_calculation(int t) function

This function is provided to you. Do NOT modify it. This function will perform the calculation of
addition for certain times specified by parameter t. When the calculation is completed, current
thread invokes Yield() function to relinquish the CPU if any other thread is ready to run. If so,
current thread is put at the end of the ready list, so that it will then eventually be re-scheduled.
4. About latter_thread(int arg) function

This function will make Thread2 invoking running_for_calculation() function as Thread1 did
previously. Notice that the parameter “arg” in this function is of no use. We write it to satisfy
the parameter format of the Fork() function.

Step 4:

After you finish coding in Step 2, re-run "make" and "./nachos". Your output should be:

Hello, my name is Thread1

Thread1 will perform calculation for 50000 times

Hello, my name is Thread2

Thread2 will perform caculation for 60000 times

Threadl ends

Thread2 ends

No threads ready or runnable, and no pending interrupts.
Assuming the program completed.

Machine halting!

Ticks: total 70, idle 0, system 70, user O
Disk I/O: reads 0, writes O

Console I/O: reads 0, writes O

Paging: faults O

Network I/O: packets received 0, sent 0

Cleaning up...

Your output is not necessary to be the same but 3 points must be satisfied:

1. Print the name of Thread1l and Thread2.

2. Print the information claiming that thread1 is going to perform calculation for certain times

with the right parameter.
3. Thread1 ends before Thread2

Step 5: Save the output to file

./nachos > projectl_output2.txt

This command runs the Nachos and save the output to file projectl_output2.txt

Keep projectl_output2.txt for grading.

Task 3: Simple Thread Scheduling in Nachos

In this task, you are asked to fulfill the following 6 steps.

Step 1: Add four code lines in source file projectl.cc

Add two code lines under Task-Comment 4 (within the function latter_thread()) and Task-
Comment 9 (within the function prior_thread()) for printing the global variable “global”
information in the two threads and the printed message should claim the thread name where
the global variable is. For example, the printed message should be in a format like:

The global variable in Threadl is 1

Then, please add the code line

th1->Suspend();

under Task-Comment 1 of the source file projectl.cc (within the function latter_thread()). Please

do NOT delete the comment line.
Add the code line

th1->Resume(); ‘
under Task-Comment 5 of the source file projectl.cc (within the function latter_thread()). Please
do NOT delete the comment line.

Step 2: Rebuild the project and re-run “nachos”

Enter the projectl folder and run “make” again to rebuild the project. Make sure the
building process is without errors or you should revise the code and get rid of them. When you
run "./nachos", your output should be:

Hello, my name is Thread1

Thread1 will perform calculation for 50000 times

Hello, my name is Thread2

Student's suspend routine called

Thread?2 will perform caculation for 60000 times

The global variable in Thread2 is 5

Thread2 ends

The global variable in Thread1l is 8

Threadl ends

No threads ready or runnable, and no pending interrupts.

Assuming the program completed.

Machine halting!

Ticks: total 90, idle 0, system 90, user O
Disk I/O: reads 0, writes O

Console I/O: reads 0, writes O

Paging: faults O

Network I/O: packets received 0, sent 0

Cleaning up...

Step 3: Save the output to file
Right after the previous step, please run command
‘ ./nachos > projectl_output3.txt
which saves output of the modified “nachos” to projectl _output3.txt.

Step 4: Scheduling the two threads in a different order

Please comment out your comment under Task-comment 1 and Task-Comment 5, and then add
two code lines to proper position of prior_thread() for scheduling the two threads in a different
order comparing to Step 1.

Step 5: Rebuild the project and save the output to file

Enter the projectl folder and run “make” again to rebuild the project. Please run command
‘ ./nachos > projectl_output4.txt

which saves output of the modified “nachos” to projectl_output4.txt.

Step 6: Compare the outputs of task 3

Find out the difference between the outputs of task 3 which are saved in

projectl output3.txt and projectl_output4.txt respectively. Describe and explain the
difference briefly. You are required to write the answer in projectl_report.txt.

Note: Keep projectl.cc, projectl_output3.txt, projectl_outputd.txt and projectl_report.txt
for grading.

After you finish these tasks:

1) Please generate a single file using ZIP and submit it through CASS.

2) The name of the ZIP should be "projl_******** 7in" using your student ID to
replace star symbols.

3) The following files should be included insides the ZIP:

File Name Description

projectl.cc Source file you have accomplished by the end of Task 3

projectl outputl.txt Output of Task 1

projectl output2.txt Output of Task 2

projectl _output3.txt The first output of Task 3

projectl_output4.txt The second output of Task 3

projectl_report.txt The answer to the question in Step 6 of Task 3

