
Nachos� Not Another Completely Heuristic Operating System

Tom Anderson

Computer Science ���

January ��� ���	

Project Overview

�I hear and I forget� I see and I remember� I do and I understand��
� Chinese proverb

The project for this course is to build an operating system from scratch�
We believe that the best way for you to understand operating systems concepts
is to build a real operating system and then to experiment with it� To help
you get started� we have built a very simple� but functional� operating system
called Nachos� Over the course of the semester� your job will be to improve the
functionality and performance of Nachos� we expect that you will eventually
modify or replace much of what we have written�

The project has �ve phases� corresponding to each of the major pieces of
a modern operating system� thread management� multiprogramming� virtual
memory� �le systems� and networking�

Some phases build on previous phases� for example� the �le system uses
thread management routines� As far as possible� we have structured the as	
signments so that you will be able to �nish the project even if all of the pieces
are not working� but you will get more out of the project if you use your own
software� Part of the charm of building operating systems is that you get to
�use what you build� 
 if you do a good job in designing and implementing the
early phases of the project� that will simplify your task in building later phases�

The end result of the project is to build a distributed application� for in	
stance� a game such as �tic	tac	toe� or �battleship�� with each player on a
di�erent computer connected by a network� But� before you do this� you have
to build the operating system that the distributed application needs in order
to be able to run� that is� you have to build the infrastructure for running
distributed programs�

Part of the code we provide is a software emulation of a network of MIPS	
like workstations� For instance� our code emulates turning on and o� interrupts�
taking exceptions and page faults� as well as the actions of physical devices 
e�g��
a disk� a console� and a network controller��

It is important to realize that while we run Nachos on top of this emulation as
a user program on UNIX� the code you write and most of the code we provide are
exactly the same as if Nachos were running on bare hardware� We run Nachos
as a user program for convenience� so that we can use gdb and so that multiple
students can run Nachos at the same time on the same machine� These same

�



reasons apply in industry 
 it is usually a good idea to test out system code in
a simulated environment before running it on potentially �aky hardware�

In order to port Nachos to real hardware� we would have to replace our
emulation code with a little bit of machine	dependent code and some physical
machines� For example� in assignment �� we provide routines to enable and
disable interrupts� on real hardware� these functions are provided by the CPU�
In assignment �� we emulate the behavior of a physical disk� disk read and write
requests instead go to a UNIX �le and an interrupt is generated after some
period of time� The details of how to make disk read and write requests varies
tremendously from disk device to disk device� in practice� you would want to
hide these details behind something like the Disk abstraction that we provide�

Unless you work for a really smart company� when you develop operating
system software you usually cannot change the hardware to make your life easier�
Thus� you are not permitted to change any of our emulation code� although
you are permitted to change any of the Nachos code that runs on top of the
emulation�

Nachos is coded in a subset of C��� a separate document covers the parts
of C�� that you will need to know�

Finally� a former student had the following suggestions for doing well in this
course� and since we agree with all of them� we include them here�

Read the code that is handed out with the assignment �rst� until you pretty
much understand it� Start with the ��h� �les�

Don�t code until you understand what you are doing� Design� design� design
�rst� Only then split up what each of you will code�

Talk to as many other people as possible� CS is learned by talking to others�
not by reading� or so it seems to me now�

�


