

Operating System Concepts - 9th Edition

Silberschatz, Galvin and Gagne @2

4

Chapter 10: File System

- File Concept
- Access Methods
- Disk and Directory Structure
- File-System Mounting
- File Sharing
- Protection

Objectives

- To explain the functions of file systems
- To describe the interfaces to file systems
- To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory structures
- To explore file-system protection

File Concept

- Contiguous logical address space
- Types:
 - Data
 - numeric
 - character
 - ▶ binary
 - Program
- Contents defined by the file's creator
 - Many types, consider text file, source file, executable file

Operating System Consents - 9th Edition

10.3

Operating System Concepts – 9th Edition

10.


File Attributes

- Name only information kept in human-readable form
- Identifier unique tag (number) identifies files within a file system
- **Type** needed by systems that support different types
- Location pointer to file location on device
- Size current file size
- Protection controls who can do reading, writing, executing, and etc.
- Time, date, and user identification data for protection, security, and usage monitoring
- Information about files are kept in a directory structure, which is maintained on the disk. Part of it can be cached in main memory
- Many variations, including extended file attributes such as file checksum
- Information kept in the directory structure

File info Window on Mac OS X

File Operations

- File is an ADT or abstract data type
- Create create a file
- Write at write pointer location
- Read at read pointer location
- Reposition within file seek
- Delete
- Truncate
- **Open(F_i)** search the directory structure on disk for entry F_{i} , and move the content of entry to memory, preparing file for subsequent access
- Close (F_i) move the content of entry F_i in memory to directory structure on disk
- Such operations involve the changes of various OS data structures

the file open

last processes closes it

Open File Locking

- Provided by some operating systems and file systems
 - Similar to reader-writer locks
 - Shared lock similar to reader lock several processes can acquire it concurrently
 - Exclusive lock similar to writer lock
- Mediates access to a file
- Mandatory or advisory:
 - · Mandatory access is denied depending on locks held and requested. Window OS uses mandatory lock
 - Advisory processes can find status of locks and decide what to do – programmers decide. Unix systems use advisory lock

File Types - Name, Extension

Open Files

• Open-file table: tracks open files, system-wide open-file table, and

• File pointer: pointer to last read/write location, per process that has

File-open count: counter of number of times (processes) that the

file is open - to allow removal of data from the open-file table when

Several data structures are needed to manage open files:

Disk location of the file: cache of data access information

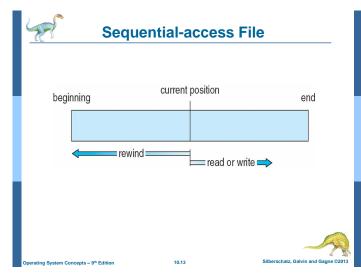
Access rights: per-process access mode information

file type	usual extension	function	
executable	exe, com, bin or none	ready-to-run machine- language program	
object	obj, o	compiled, machine language, not linked	
source code	c, cc, java, pas, asm, a	source code in various languages	
batch	bat, sh	commands to the command interpreter	
text	txt, doc	textual data, documents	
word processor	wp, tex, rtf, doc	various word-processor formats	
library	lib, a, so, dll	libraries of routines for programmers	
print or view	ps, pdf, jpg	ASCII or binary file in a format for printing or viewing	
archive	arc, zip, tar	related files grouped into one file, sometimes com- pressed, for archiving or storage	
multimedia	mpeg, mov, rm, mp3, avi	binary file containing audio or A/V information	

- None sequence of words, bytes
- Simple record structure
 - Lines
 - Fixed length
 - Variable length
- Complex Structures Formatted document
 - Relocatable load file
- Can simulate last two with the first method by inserting appropriate control characters
- Who decides:
 - Operating system
 - Program

Access Methods

Sequential Access


read next write next reset no read after last write

■ Direct Access - file is fixed length logical records

write n position to n read next write next

- Relative block numbers allow OS to decide where file should be placed
 - See disk block allocation problem in Chapter 11

Simulation of Sequential Access on Direct-access File

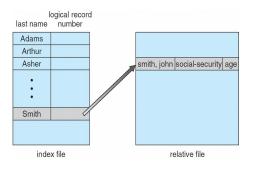
sequential access	implementation for direct access		
reset	<i>cp</i> = 0;		
read next	$ read cp; \\ cp = cp + 1; $		
write next	write cp ; $cp = cp + 1$;		

Operating System Concepts – 9th Edition

10.1

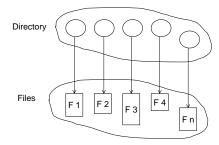
4

Other Access Methods


- Other access methods can be built on top of a direct-access method
- General involve creation of an index for the file
- Keep index in memory for fast determination of location of data to be operated on (consider UPC code plus record of data about that item)
- If too large, index (in memory) of the index (on disk)
- IBM indexed sequential-access method (ISAM)
 - Small master index, points to disk blocks of secondary index
 - File kept sorted on a defined key
 - All done by the OS
- VMS operating system provides index and relative files as another example (see next slide)

herschatz, Galvin and Gagne ©2013

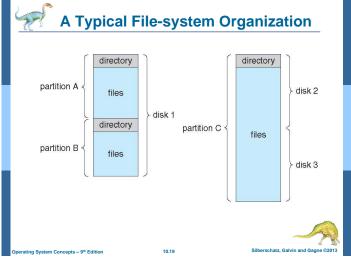
Example of Index and Relative Files


tom Concents - 9th Edition

Directory Structure

A collection of nodes containing information about all files

Both the directory structure and the files reside on disk


10.17

Disk Structure

- Disk can be subdivided into partitions
- Disks or partitions can be RAID protected against failure
- Disk or partition can be used raw without a file system, or formatted with a file system
- Partitions also known as minidisks, slices
- An entity containing a file system known as a volume
- Each volume containing the file system also tracks that file system info in device directory or volume table of contents
- Other than general-purpose file systems, there are many specialpurpose file systems, frequently all within the same operating system or computing systems

Types of File Systems

- We mostly deal with general-purpose file systems
- But systems frequently have many file systems, some generaland some special- purpose
- Consider Solaris has
 - tmpfs memory-based volatile FS for fast, temporary I/O
 - objfs interface into kernel memory to get kernel symbols for debugging
 - ctfs contract file system for managing daemons
 - lofs loopback file system allows one FS to be accessed in place of another
 - procfs kernel interface to process structures
 - ufs, zfs general purpose file systems

Operating System Concepts – 9th Edition

10.20

Operations Performed on Directory

- Search for a file
- Create a file
- Delete a file
- List a directory
- Rename a file
- Traverse the file system

Organize the Directory (Logically) to Obtain

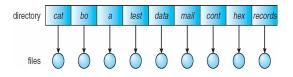
- Efficiency locating a file quickly
- Naming convenient to users
 - Two users can have same name for different files
 - The same file can have several different names
- Grouping logical grouping of files by properties, (e.g., all Java programs, all games, ...)

Operating System Concepts – 9th Edition

10.21

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts – 9th Edition

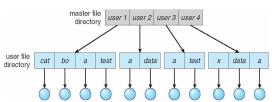

10.22

4

Single-Level Directory

A single directory for all users

Naming problem


Grouping problem

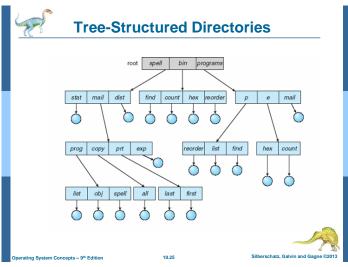
erschatz. Galvin and Gages ©2013

4

Two-Level Directory

Separate directory for each user

- Path name /user1/cat
- Can have the same file name under different users
- More efficient searching than single-level directory
- No grouping capability



Operating System Concepts – 9th Edition

10

Operating System Concepts – 9th Editio

10.2

Tree-Structured Directories (Cont.)

- Efficient searching
- Grouping Capability
- Current directory (working directory)
 - cd /spell/mail/prog
 - type list

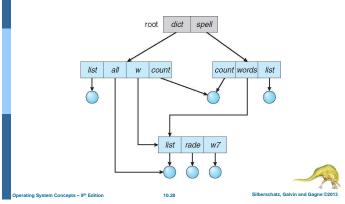
Tree-Structured Directories (Cont)

- Absolute or relative path name
- Creating a new file is done in the current directory
- Delete a file in the current directory

rm <file-name>

Creating a new subdirectory is done in current directory

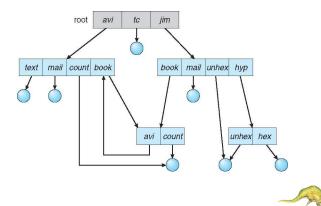
mkdir <dir-name>


Example: if in current directory /mail mkdir count

Deleting "mail" \Rightarrow deleting the entire subtree rooted by "mail"

Acyclic-Graph Directories

■ Have shared subdirectories and files – more flexible and complex

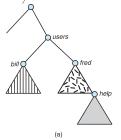


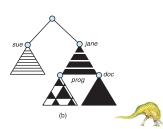
Acyclic-Graph Directories (Cont.)

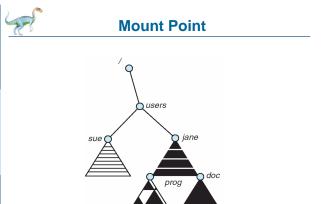
- New directory entry type
 - Link another name (pointer) to an existing file
 - Resolve the link follow pointer to locate the file
- Two different names (aliasing)
 - Ensure not traversing shared structures more than once
- Deletion might lead to that dangling pointers that point to empty files or wrong files
- Yet there is also difficulty ensuring there is no cycles in a graph complexity associated with it

General Graph Directory

ng System Concepts - 9th Edition


General Graph Directory (Cont.)


- How do we guarantee no cycles?
 - · Allow only links to file not subdirectories
 - Every time a new link is added use a cycle detection algorithm to determine whether there is a cycle or not

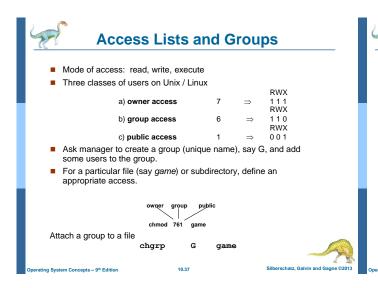

File System Mounting

- A file system must be mounted before it can be accessed just like a file must be opened before it is used
- A unmounted file system (i.e., Fig. 10-11(b)) is mounted at a mount point

File Sharing

- Sharing of files on multi-user systems is desirable
- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed file-sharing method
- If multi-user system
 - User IDs identify users, allowing permissions and protections to be per-Group IDs allow users to be in groups, permitting group access rights
 - Owner of a file / directory
 - Group of a file / directory

File Sharing - Remote File Systems


- Uses networking to allow file system access between systems
 - Manually via programs like FTP
 - Automatically, seamlessly using distributed file systems
 - Semi automatically via the world wide web
- Client-server model allows clients to mount remote file systems from
 - Server can serve multiple clients
 - Client and user-on-client identification is insecure or complicated
 - NFS is standard UNIX client-server file sharing protocol
 - CIFS is standard Windows protocol
 - Standard operating system file calls are translated into remote calls
- Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory implement unified access to information needed for remote computing



Protection

- File owner/creator of the file should be able to control:
 - what can be done
 - by whom
- Types of access
 - Read
 - Write Execute
 - Append
 - Delete
 - List

A Sample UNIX Directory Listing

-rw-rw-r	1 pbg	staff	31200	Sep 3 08:30	intro.ps
drwx	5 pbg	staff	512	Jul 8 09.33	private/
drwxrwxr-x	2 pbg	staff	512	Jul 8 09:35	doc/
drwxrwx	2 pbg	student	512	Aug 3 14:13	student-proj/
-rw-rr	1 pbg	staff	9423	Feb 24 2003	program.c
-rwxr-xr-x	1 pbg	staff	20471	Feb 24 2003	program
drwxxx	4 pbg	faculty	512	Jul 31 10:31	lib/
drwx	3 pbg	staff	1024	Aug 29 06:52	mail/
drwxrwxrwx	3 pbg	staff	512	Jul 8 09:35	test/

10.39

Silberschatz, Galvin and Gagne ©201