
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Chapter 9: Virtual-Memory

Management

9.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Chapter 9: Virtual-Memory Management

 Background

 Demand Paging

 Page Replacement

 Allocation of Frames

 Thrashing

 Other Considerations

9.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement algorithms, and allocation of

page frames

 To discuss the principle of the working-set model

9.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Background

 Code needs to be in memory to execute, but entire program is not needed in many

cases.

 Error code, unusual routines. Some errors seldom, if ever, occur in practice, this code is almost

never executed

 large data structures such as arrays, lists and tables are often allocated more memory than they

actually need. For example, an array may be declared 100x100 elements, even though it is seldom

larger than 10x10

 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical memory. Programs can be written with an

extremely large virtual memory address, simplifying the programming task

 Each user program could take less physical memory, more programs could be run at the same time,

which increases CPU utilization (degree of multiprogramming) and throughput

 Less I/O would be needed to load or swap user programs into physical memory, so each user

program would run faster.

9.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Background

 Virtual memory – separation of user logical memory from physical memory

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical address space

 Allows address spaces to be shared by several processes. For instance, system libraries can be

shared by several processes

 Allows for more efficient process creation, as pages can be shared during process creation, thus

speeding up the process creation

 More programs running concurrently

 Less I/O needed to load or swap processes

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Virtual Memory That is

Larger Than Physical Memory

9.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Virtual-address Space

 Heap can grow upward in memory as it used in
dynamic memory allocation

 Stack can grow downward in memory through
successive function calls

 The large blank space (or hole) between the heap
and stack is part of the virtual address space, but
will require actual physical pages (space) only if
the heap or stack grows.

9.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Shared Library Using Virtual Memory

9.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Demand Paging

 Could bring entire process into memory at load time

 Or bring a page into memory only when it is needed

 Less I/O needed, no unnecessary I/O

 Less memory needed

 Faster response

 More users to be run

 Page is needed reference to it

 invalid reference abort

 not-in-memory bring to memory

 Lazy swapper – never swaps a page into memory unless the page will be needed/referenced

 Swapper that deals with pages is a pager, since a swapper manipulates entire processes, whereas a
pager is concerned with the individual pages of a process.

9.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Transfer of a Paged Memory to

Contiguous Disk Space

9.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v in-memory – memory resident, i not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i page fault

v

v

v

v

i

i

i

….

Frame # valid-invalid bit

page table

9.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Page Table When Some Pages

Are Not in Main Memory

9.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Page Fault

 If there is a reference to a page, first reference to that page will trap to operating system:

 page fault

1. Operating system looks at another table to decide:

 Invalid reference abort

 Just not in memory

2. Get empty frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

9.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Aspects of Demand Paging

 Extreme case – start process with no pages in memory

 OS sets instruction pointer to first instruction of process, non-memory-resident -> page fault

 And for every other process pages on first access

 Pure demand paging

 Actually, a given instruction could access multiple pages -> multiple page faults

 Pain decreased because of locality of reference

 Hardware support is needed for demand paging

 Page table with valid / invalid bit

 Secondary memory (swap device with swap space)

 Instruction restart

9.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Steps in Handling a Page Fault

9.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Performance of Demand Paging

 Stages in Demand Paging

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame in physical memory:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user(s)

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the interrupted

instruction

9.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Performance of Demand Paging (Cont.)

 Page Fault Rate 0 p 1

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

 EAT = (1 – p) x memory access

 + p (page fault overhead

 + swap page out

 + swap page in

 + restart overhead

)

9.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)

 = (1 – p x 200 + p x 8,000,000

 = 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

 EAT = 8.2 microseconds.

 This is a slowdown by a factor of 40!!

 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p

 p < .0000025

 < one page fault in every 400,000 memory accesses

9.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

What Happens if There is no Free Frame?

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc.

 How much to allocate to each?

 Page replacement – find some page in memory, but not really in use, page it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in the minimum number of page faults

 Same page may be brought into memory several times

9.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine to include page

replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written

back to disk

 Page replacement completes separation between logical memory and physical memory – large

virtual memory can be supported on a smaller physical memory

9.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Need For Page Replacement

9.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

 - If there is a free frame, use it

 - If there is no free frame, use a page replacement algorithm to select a victim frame

 - Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

9.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Page Replacement

9.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines

 How many frames to give each process

 Which frames to replace

 Page-replacement algorithm

 Want the lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references (reference string)

and computing the number of page faults on that string

 String is just page numbers, not full addresses

 Repeated access to the same page does not cause a page fault (thus does not show)

 In all our examples, the reference string is

 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

9.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Graph of Page Faults Versus

The Number of Frames

9.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

 Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages?

 Just use a FIFO queue

7

0

1

1

2

3

2

3

0

4 0 7

2 1 0

3 2 1

15 page faults

9.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

FIFO Page Replacement

9.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

FIFO Illustrating Belady’s Anomaly

9.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

The Optimal Algorithm (OPT)

 Replace page that will not be used for longest period of time

 9 is the optimal for the example on the next slide

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

9.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Optimal Page Replacement

9.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

 But how to implement?

9.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

LRU Algorithm (Cont.)

 Counter implementation

 Every page entry has a counter; every time page is referenced through this entry, copy the clock into

the counter

 When a page needs to be changed, look at the counters to find the smallest value

 Search through table needed

 Stack implementation

 Keep a stack of page numbers in a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 But each update more expensive

 No need to search for replacement

 LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

 A stack algorithm is an algorithm for which it can be shown (or proved) that the set of pages in

memory for n frames is always a subset of the set of pages that would be in memory with n+1

frames.

9.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Use Of A Stack to Record The

Most Recent Page References

9.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

LRU Approximation Algorithms

 LRU needs special hardware and still slow

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Clock replacement

 If page to be replaced has

 Reference bit = 0 -> replace it

 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules (FIFO and clock)

9.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Second-Chance (Clock) Page-Replacement Algorithm

9.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Counting Algorithms

 Keep a counter of the number of references that have been made to each page

 Not commonly used

 The least frequently used (LFU) Algorithm: replaces the page with the smallest count/

 The most frequently used (MFU) Algorithm: replace the page with the largest count based on

the argument that the page with the smallest count was probably just brought in and has yet to

be used

 Neither LFU nor MFU replacement is commonly used. The implementation of such algorithms is

expensive, and they do not approximate OPT replacement well

9.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Allocation of Frames

 Each process needs certain minimum number of frames in order to execute program

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 The Maximum of course is the total frames in the system

 Two major allocation schemes

 fixed allocation

 priority allocation

 Many variations

9.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after allocating frames for the OS)

and 5 processes, give each process 20 frames

 Proportional allocation – Allocate according to the size of process

 Dynamic as the degree of multiprogramming, process sizes change over the time

m
S

s
pa

m

sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size

m 64

s1 10

s2 127

a1
10

137
 64 5

a2
127

137
 64 59

9.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities rather than size

 If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with lower priority number

9.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement frame from the set of all frames, even if

that frame is currently allocated to some other process; thus, one process can take a frame

from another

 This can result in better system throughput

 But then process execution time can vary greatly, as a process cannot control its own page-fault

rate.

 Local replacement – each process selects from only its own set of allocated frames

 More consistent per-process performance

 But possibly underutilized memory, since pages allocated to a process can not utilized by another

process, even if this page is not currently used by the process holding it

9.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault rate is very high

 Page fault to get page

 Replace existing frame

 But quickly need replaced frame back

 This leads to:

 Low CPU utilization

 Operating system thinking that it needs to increase the degree of multiprogramming

 Another process added to the system – aggravate the problem

 Thrashing a process is busy swapping pages in and out

9.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Thrashing (Cont.)

9.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Demand Paging and Thrashing

 Why does demand paging work?

Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?

 size of locality > total memory size

 We can limit effects by using local or priority page replacement, as thrashing in one process can not

steal frames from another process and cause the latter to thrash as well

9.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Locality In A Memory-Reference Pattern

9.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Working-Set Model

 working-set window a fixed number of page references

Example: 10,000 instructions

 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent (varies in time)

 if too small will not encompass entire locality

 if too large will encompass several localities

 if = will encompass entire program

 D = WSSi total demand frames

 Approximation of the current locality in the system (of all processes)

 if D > m Thrashing – at least one process is short of memory

 Policy if D > m, then suspend or swap out one of the processes

 The working-set strategy prevent thrashing while keeping the degree of multiprogramming as

high as possible, thus optimizes CPU utilization

9.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Working-set model

9.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Keeping Track of the Working Set

 It is difficult to keep track of the working set, as working-set window is a moving window which

needs to be updated for each memory reference

 Approximate with interval timer + a reference bit

 Example: = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and sets the values of all reference bits to 0

 If one of the bits in memory = 1 page in working set

 This is not completely accurate, as we cannot tell where, within an interval of 5,000, a reference

occurred

 Improvement = 10 bits and interrupt every 1000 time units, more accurate but cost is higher

9.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Page-Fault Frequency

 More direct approach than WSS

 Establish “acceptable” page-fault frequency rate and use local replacement policy

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Working Sets and Page Fault Rates

9.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Other Considerations -- Prepaging

Prepaging

 To reduce the large number of page faults that occurs at process startup

 Prepage all or some of the pages a process will need, before they are referenced

 But if prepaged pages are unused, I/O and memory was wasted

 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of prepaging

s * (1- α) unnecessary pages?

 α near zero prepaging loses

9.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Other Issues – Page Size

 Sometimes OS designers have a choice

 Especially if running on custom-built CPU

 Page size selection must take into consideration:

 Fragmentation

 Page table size

 Resolution

 I/O overhead

 Number of page faults

 Locality

 TLB size and effectiveness

 Always power of 2, usually in the range 212 (4,096 bytes) to 222 (4,194,304 bytes)

 On average, growing over time

9.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the opportunity to use them without an

increase in fragmentation

9.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9th Edition

Other Issues – Program Structure

 Program structure

 Int[128,128] data;

 Each row is stored in one page

 Program 1

 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)

 data[i,j] = 0;

 128 x 128 = 16,384 page faults

 Program 2

 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)

 data[i,j] = 0;

128 page faults

