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Objectives

 To provide a detailed description of various ways of organizing memory hardware

 To discuss various memory-management techniques, including paging and segmentation

 To provide a detailed description of the Intel Pentium, which supports both pure segmentation 

and segmentation with paging
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Background

 Program must be brought (from disk)  into memory and placed within a process for it to run

 Main memory and registers are the only storage CPU can access directly

 Memory unit only sees a stream of addresses + read requests, or address + data and write 

requests

 Register access in one CPU clock

 Accessing main memory may take many cycles of the CPU, causing a stall, since it does not 

have the data required to complete the instruction it is executing

 Cache sits between main memory and CPU registers, on the CPU chip for fast access

 Protection of memory required to ensure correct operation



8.5 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Hardware Address Protection with Base and Limit Registers

 A pair of base and limit registers define the address space

 CPU must check every memory access generated in user mode to ensure it is between 

base and limit for that user
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Address Binding

 Program must be brought into memory and placed within a process for it to be run

 Input queue – collection of processes on the disk that are waiting to be brought into memory 

to run the program

 Long-term scheduler’s job

 Without support, must be loaded into address 0000

 Inconvenient to have first user process physical address always at 0000 

 How can it not be?

 Further, addresses represented in different ways at different stages of a program’s life

 Source code addresses usually symbolic

 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”

 Linker or loader will bind relocatable addresses to absolute addresses

 i.e. 74014

 Each binding maps one address space to another
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Binding of Instructions and Data to Memory

 Binding of instructions and data to addresses:

 Choose addresses for instructions and data from the standpoint 
of the processor

data1:dw 32

…

start:lw r1,0(data1)

jal checkit

loop: addi r1, r1, -1

bnz r1, r0, loop …

checkit: …

0x300 00000020

… …

0x900 8C2000C0

0x904 0C000340

0x908 2021FFFF

0x90C 1420FFFF

…

0xD00 …
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Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can happen at three 

different stages:

 Compile time:  If memory location known a priori, absolute code can be generated; must 

recompile code if starting location changes. The MS-DOS .COM format programs re bound at 

compile time

 Load time:  compiler must generate relocatable code if memory location is not known at 

compile time. The binding is delayed until load time. If the starting address changes, we need 

only reload the user code to incorporate this changed value.

 Execution time:  Binding delayed until run time if the process can be moved during its 

execution from one memory segment to another

 Need special hardware support for address maps (e.g., base and limit registers)

 Most general-purpose operating systems use this method
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Multistep Processing of a User Program 

Address binding of instructions and data to 
memory addresses can happen at three 
different stages

 Compile time:  If memory location known a priori, 

absolute code can be generated; must recompile code if 

starting location changes (e.g., “gcc”). MS-DOS uses 

this

 Load time:  Compiler must generate relocatable code if 

memory location is not known at compile time (e.g, Unix 

“ld” does link). The binding is delayed until load time. we 

need only reload the user code to incorporate this 

changed value

 Execution time:  Binding delayed until run time if the 

process can be moved during its execution from one 

memory segment to another.  This needs hardware 

support for address maps (e.g., base and limit registers), 

e.g., dynamic libs. Most general-purpose operating 

systems use this method
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Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate physical address space is 

central to proper memory management

 Logical address – generated by the CPU; also referred to as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time and load-time address-binding 

schemes; logical (virtual) and physical addresses differ in execution-time address-binding 

scheme

 Logical address space is the set of all logical addresses generated by a program

 Physical address space is the set of all physical addresses generated by a program
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Memory-Management Unit (MMU)

 MMU is the hardware device that at run time maps virtual address to physical address

 Many methods possible, covered in the rest of this chapter

 To start, consider simple scheme where the value in the relocation register is added to every 

address generated by a user process at the time it is sent to memory

 Base register now called relocation register

 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the real physical addresses

 Execution-time binding occurs when reference is made to location in memory

 Logical address bound to physical addresses
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Dynamic Relocation Using a Relocation Register

 Dynamic Loading: routine is not loaded until it 

is called. All routines are kept on disk in a 

relocated format.

 Better memory-space utilization; unused 

routine is never loaded

 Useful when large amounts of code are 

needed to handle infrequently occurring cases

 No special support from the operating system 

is required

 Implemented through program design

 OS can help by providing libraries to 

implement dynamic loading
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Swapping

 A process can be swapped temporarily 

out of memory to a backing store, and 

then brought back into memory for 

continued execution

 Total physical memory space of 

processes can exceed physical 

memory, thus increasing the degree of 

multiprogramming

 Backing store – fast disk large enough 

to accommodate copies of all memory 

images for all users; must provide 

direct access to these memory images

 Roll out, roll in – swapping variant 

used for priority-based scheduling 

algorithms; lower-priority process can 

be swapped out so higher-priority 

process can be loaded and executed



8.14 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Swapping (Cont.)

 Major part of swap time is transfer time; total transfer time is directly proportional to the amount 

of memory swapped. 

 Suppose the a user process has 100 MB size, and backing store is a standard hard disk with a 

transfer rate of 50 MB/s. Thus the transfer time of the 100-MB process is 2 seconds, which is 

2,000 millisecond (fairly high).

 System maintains a ready queue of ready-to-run processes which have memory images on disk

 Does the swapped out process need to swap back in to same physical addresses?

 Depends on address binding method

 Plus consider pending I/O to / from process memory space

 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows)

 Swapping normally disabled

 Started if more than threshold amount of memory allocated

 Disabled again once memory demand reduced below threshold
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Contiguous Allocation

 Main memory must support both OS and user processes

 Limited resource, must allocate efficiently

 Contiguous allocation is one early method

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of memory

 Relocation registers used to protect user processes from each other, and from changing 

operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each logical address must be less than the limit 

register 

 MMU maps logical address dynamically



8.16 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Hardware Support for Relocation and Limit Registers
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Contiguous Allocation (Cont.)

 Multiple-partition allocation

 Degree of multiprogramming is bounded by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ needs)

 Hole – block of available memory; holes of various size are scattered throughout memory

 When a process arrives, it is allocated memory from a hole large enough to accommodate it

 Process exiting frees its partition, adjacent free partitions combined

 Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10
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Dynamic Storage-Allocation Problem

 First-fit:  Allocate the first hole that is big enough

 Best-fit:  Allocate the smallest hole that is big enough; must search entire list, unless ordered 
by size  

 Produces the smallest leftover hole

 Worst-fit:  Allocate the largest hole; must also search entire list  

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage utilization
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Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it is not 

contiguous

 Internal Fragmentation – allocated memory may be slightly larger than requested memory; this 

size difference is memory internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to fragmentation

 1/3 may be unusable -> this property is known as the 50-percent rule
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Fragmentation (Cont.)

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together in one large block

 Compaction is possible only if relocation is dynamic, and is done at execution time. In another word, if 

relocation is static and is done at assembly or load time, compaction cannot be done

 The compaction can be expensive (time-consuming)

 The backing store has similar fragmentation problems, which will be discussed in Chapters 10-12

 Another solution is to permit the logical address space of the processes to be non-contiguous, thus 

allowing a process to be allocated physical memory wherever such memory is available. These 

techniques include

 Segmentation

 Paging
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Segmentation

 Memory-management scheme that supports user view of memory 

 A program is a collection of segments

 A segment is a logical unit such as:

main program

procedure 

function

method

object

local variables, global variables

common block

stack

symbol table

arrays
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User’s View of a Program
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Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space
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Segmentation Architecture 

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional programmer-defined addresses into one-dimensional 

physical addresses; each table entry has:

 base – contains the starting physical address where the segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in memory

 Segment-table length register (STLR) indicates number of segments used by a program;

segment number s is legal if s < STLR
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Segmentation Architecture (Cont.)

 Protection.  With each entry in segment 

table associate:

 validation bit = 0  illegal segment

 read/write/execute privileges

 Protection bits associated with segments; 

code sharing occurs at segment level

 Since segments vary in length, memory 

allocation is a dynamic storage-allocation 

problem

 A segmentation example is shown in the 

following diagram
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Example of Segmentation
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Sharing of Segments
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Example: Four Segments (16 bit addresses)

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800

0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might 
be shared
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Paging

 Physical  address space of a process can be noncontiguous; process is allocated physical 

memory whenever the latter is available

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and load program

 A page table is used to translate logical to physical addresses

 Backing store likewise split into pages

 Still have Internal fragmentation
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Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which contains base address of each page in 

physical memory

 Page offset (d) – combined with base address to define the physical memory address that is sent to 

the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m - n n
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Paging Hardware
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Paging Model of Logical and Physical Memory
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages
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Paging (Cont.)

 Calculating internal fragmentation

 Page size = 2,048 bytes

 Process size = 72,766 bytes

 35 pages + 1,086 bytes

 Internal fragmentation of 2,048 - 1,086 = 962 bytes

 Worst case fragmentation = 1 frame – 1 byte

 On average fragmentation = 1 / 2 frame size

 So small frame sizes desirable?

 But each page table entry takes memory to track, smaller page size leads to larger page table

 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB

 Process view and physical memory now very different

 By implementation process can only access its own memory
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Free Frames

Before allocation After allocation
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Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory accesses

 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of a special fast-lookup hardware cache called 

associative memory or translation look-aside buffers (TLBs)

 TLBs typically small (64 to 1,024 entries). Some CPUs implement separate instruction and data address TLBs

 On a TLB miss (if the page number is not in the TLB), value is loaded into the TLB for faster access next time

 Replacement policies must be considered

 Some entries can be wired down for permanent fast access, for example TLB entries for key kernel 

code
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Associative Memory

 Associative memory (TLB) – parallel search 

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory, and also bring this entry to the TLB 

Page # Frame #
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Paging Hardware With TLB
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Effective Access Time

 Associative Lookup =  time unit

 Can be < 10% of memory access time

 Hit ratio = 

 Hit ratio – percentage of times that a page number is found in the associative registers; ratio related 
to number of associative registers

 Consider  = 80%,  = 20ns for TLB search, 100ns for memory access

 Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

 Consider  = 80%,  = 20ns for TLB search, 100ns for memory access

 EAT = 0.80 x 100 + 0.20 x 200 = 120ns

 Consider more realistic hit ratio ->   = 99%,  = 20ns for TLB search, 100ns for memory access

 EAT = 0.99 x 100 + 0.01 x 200 = 101ns
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Memory Protection

 Memory protection implemented by associating protection bit with each frame to indicate if read-

only or read-write access is allowed

 Can also add more bits to indicate page execute-only, and so on

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’ logical address space, and is thus a legal 

page

 “invalid” indicates that the page is not in the process’ logical address space

 The operating system sets this bit for each page to allow or disallow access to the page

 Any violations result in a trap to the kernel

 Example: a 14-bit address space (0 to 16383). If a program only uses address 0 to 10468, with a 

page size 2KB, pages 0-5 are valid, pages 6-7 are invalid.

 Rarely does a process use all it address range, usually only a small fraction of the address space 

available. It would be wasteful to create a page table with entries for every page in the address 

range, and most of the table entries are unused but would take up memory space. To use page-

table length register (PTLR) to indicate the size of the page
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Valid (v) or Invalid (i) Bit In A Page Table
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An Example: Intelx86 Page Table Entry

 What is in a Page Table Entry or PTE?
 For page translation, each page table consists of a number of PTEs
 Permission bits: valid, read-only, read-write, write-only

 Example: Intel x86 architecture PTE:
 Address same format previous slide (10, 10, 12-bit offset)
 Intermediate page tables called “Directories”

P:   Present (same as “valid” bit in other architectures) 
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=14MB page (directory only).

Bottom 22 bits of virtual address serve as offset within a page

Page Frame Number
(Physical Page Number)

Free
(OS)

0 L D A

PC
D

PW
T U W P

01234567811-931-12
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Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, 

window systems)

 Reentrant code is non-self-modifying code; it never changes during execution

 Similar to multiple threads sharing the same process space

 Also useful for interprocess communication if sharing of read-write pages is allowed

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear anywhere in the logical address space
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Shared Pages Example
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Structure of the Page Table

 Memory structures for paging can get huge using straight-forward methods

 Consider a 32-bit logical address space as on modern computers

 Page size of 4 KB (212)

 Page table would have 1 million entries (232 / 212)

 If each entry is 4 bytes -> 4 MB of physical address space / memory for page table alone

 That amount of memory used to cost a lot

 Don’t want to allocate that contiguously in main memory, which will be allocated into 

multiple pages (frames)

 Page size 4 MB (222) results in a page table with 1,000 entries, lesser of a problem

 What about 64-bit logical address?

 Hierarchical Paging
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Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 To page the page table
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Two-Level Page-Table Scheme
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Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided into:

 a page number consisting of 20 bits

 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided into:

 a 10-bit page number 

 a 10-bit page offset

 Thus, a logical address is as follows:



 where p1 is an index into the outer page table (in Intel architecture, this is called 
“directories”, and p2 is the displacement within the page of the inner page table

 Because the address translation works from the outer page table inward, this scheme is 
also known as a forward-mapped page table

page number page offset

p1 p2 d

10 10 12
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Address-Translation Scheme
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64-bit Logical Address Space

 Even two-level paging scheme not sufficient

 If page size is 4 KB (212)

 Then page table has 252 entries

 If two level scheme, inner page tables could be 210 4-byte entries

 Address would look like

 Outer page table has 242 entries or 244 bytes

 One solution is to add a 2nd outer page table

 But in the following example the 2nd outer page table is still 234 bytes (16 GB) in size

 And possibly 4 memory access to get to one physical memory location

 The 64-bit UltraSPARC would require seven levels of paging – a prohibitive number of 

memory accesses – to translate each logical address

outer page page offset

p1 p2 d

42 10 12

inner page
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Three-level Paging Scheme
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Example: The Intel 32 and 64-bitArchitectures

 Dominant industry chips 

 16-bit Intel 8086 (late 1970s) and 8088 was used in original IBM PC 

 Pentium CPUs are 32-bit and called IA-32 architecture

 It supports both segmentation and paging

 Current Intel CPUs are 64-bit and called IA-64 architecture

 Currently most popular PC operating systems run on Intel chips, including Windows, MacOS, and 

Linux (of course Linux runs on several architectures as well)

 Intel’s dominance has not spread to mobile systems, where they mainly use ARM architecture

 Many variations in the chips, cover the main ideas here
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Intel IA-32 Segmentation
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Logical to Physical Address Translation in IA-32
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Intel IA-32 Paging Architecture
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Intel x86-64

 Current generation Intel x86-64 architecture

 64 bits is ginormous (> 16 exabytes)

 In practice only implement 48 bit addressing

 Page sizes of 4 KB, 2 MB, 1 GB

 Four levels of paging hierarchy

 Can also use PAE (page address extension ) so virtual addresses are 48 bits and physical addresses 

are 52 bits (4096 terabytes)
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Example: ARM Architecture

 Dominant mobile platform chip 

(Apple iOS and Google Android 

devices for example)

 Modern, energy efficient, 32-bit 

CPU

 4 KB and 16 KB pages

 1 MB and 16 MB pages (termed 

sections)

 One-level paging for sections, 

two-level for smaller pages

 Two levels of TLBs

 Outer level has two micro 

TLBs (one data, one 

instruction)

 Inner is single main TLB

 First inner is checked, on miss 

outers are checked, and on 

miss page table walk 

performed by CPU

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB 

section

32 bits


