
Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 6: Process
Synchronization

6.2! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 6: Process Synchronization

■  Background"
■  The Critical-Section Problem"
■  Peterson’s Solution"
■  Synchronization Hardware"
■  Mutex Locks"
■  Semaphores"
■  Classic Problems of Synchronization"
■  Monitors"
■  Synchronization Examples "

"
"
"

6.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

■  To introduce the critical-section problem, whose solutions can be used to ensure the
 consistency of shared data"

■  To present both software and hardware solutions of the critical-section problem"

■  To examine several classical process-synchronization problems"

■  To explore several tools that are used to solve process synchronization problems"

6.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Background

■  Processes can execute concurrently"
●  Processes may be interrupted at any time, partially completing execution"

■  Concurrent access to shared data may result in data inconsistency!

■  Maintaining data consistency requires mechanism(s) to ensure the orderly execution
 of cooperating processes"

"
■  Illustration of the problem: 

Suppose that we want to provide a solution to the Producer-Consumer problem that fills all the
 buffers. We can do so by having an integer counter that keeps track of the number of full
 buffers. Initially, counter is set to 0. It is incremented each time by the producer after it
 produces an item and places in the buffer and is decremented each time by the consumer
 after it consumes an item in the buffer."

6.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Producer

while (true) {
 /* produce an item in next produced */

 while (counter == BUFFER SIZE) ;

 /* do nothing */

 buffer[in] = next produced;

 in = (in + 1) % BUFFER SIZE;

 counter++;

}

6.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Consumer
while (true) {

 while (counter == 0)

 ; /* do nothing */

 next consumed = buffer[out];

 out = (out + 1) % BUFFER SIZE;
 counter--;

 /* consume the item in next consumed */

}

6.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Race Condition
■  counter++ could be implemented as 

 
 register1 = counter
 register1 = register1 + 1
 counter = register1

■  counter-- could be implemented as 
 
 register2 = counter
 register2 = register2 - 1
 counter = register2

■  Consider this execution interleaving with “count = 5” initially:"
"

"S0: producer execute register1 = counter {register1 = 5} 
S1: producer execute register1 = register1 + 1 {register1 = 6}  
S2: consumer execute register2 = counter {register2 = 5}  
S3: consumer execute register2 = register2 – 1 {register2 = 4}  
S4: producer execute counter = register1 {counter = 6 }  
S5: consumer execute counter = register2 {counter = 4}"

"

6.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Critical Section Problem
■  A Race Condition: is a undesirable situation where several processes access and manipulate

 a shared data concurrently and the outcome of the executions depends on the particular
 order in which the accesses or executions take place"

"
■  Consider a system with n processes {p0, p1, … pn-1}"

■  Each process has a Critical Section segment of code, during which"
●  A process may be changing common variables, updating table, writing file, and etc."
●  We need to ensure when one process is in Critical Section, no other may be in its critical section"

■  Critical section problem is to design protocol(s) to solve this"

■  Each process must ask permission to enter critical section in entry section, may follow critical
 section with exit section, then remainder section!

"

6.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Critical Section

■  General structure of process pi is"

6.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other
 processes can be executing in their critical sections"

2. Progress - If no process is executing in its critical section and there exist some processes
 that wish to enter their critical section(s), the selection of the process(es) that will enter
 the critical section next cannot be postponed indefinitely"

3. Bounded Waiting - A bound must exist on the number of times that other processes are
 allowed to enter their critical sections after a process has made a request to enter its
 critical section and before that request is granted"
"
� Assume that each process executes at a nonzero speed "
� There is NO assumption concerning relative speed of the n processes"
"

6.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Critical-Section Problem in Kernel
■  Kernel code (the code implementing an operating system) is subject to several possible

 race conditions"
"
● A kernel data structure that maintains a list of all open files can be updated by multiple kernel
 processes, i.e., two processes were to open files simultaneously"
● Other kernel data structures such as structures maintaining memory allocation, process lists,
 for interrupt handling and etc."
"

■  Two general approaches are used to handle critical sections in operating system
 depending on if the kernel is preemptive or non-preemptive "

● Preemptive – allows preemption of process when running in the kernel mode, not free from
 the race condition, and more difficult in SMP architectures. !
● Non-preemptive – runs until exiting the kernel mode, blocks, or voluntarily yields CPU. This is
 essentially free of race conditions in the kernel mode"

6.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Peterson’s Solution
■  A classical software-based solution. "
"
■  This provides a good algorithmic description of solving the critical-section problem"

■  Two process solution"

■  Assume that the load and store instructions are atomic; that is, cannot be interrupted"

■  The two processes share two variables:"
●  int turn;

●  Boolean flag[2]

■  The variable turn indicates whose turn (which process) it is to enter the critical section"

■  The flag array is used to indicate if a process is ready to enter the critical section.
 flag[i] = true implies that process Pi is ready"

6.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Algorithm for Process Pi

 do {

 flag[i] = true;

 turn = j;

 while (flag[j] && turn == j);

 critical section

 flag[i] = false;

 remainder section

 } while (true);

"

6.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Peterson’s Solution – Proof
■  Mutual exclusion: Pi enters its critical section only if either flag[j]==false or turn

 ==i. If both processes are trying to enter the critical section flag[0]==flag[1] ==
 true, the value of turn can be either 0 or 1 but not both"
"

■  Pi can be prevented from entering its critical section only if it is stuck in the while loop
 with the condition flag[j]==true and turn==j;

"
■  If Pj is not ready to enter the critical section, then flag[j]==false and Pi can enter its

 critical section. "
"
■  If Pj is inside the critical section, once Pj exits its critical section, it will reset flag[j]to

 false, allowing Pi can to enter its critical section. If Pj resets flag[j] to true, it
 must also set turn to i. Thus since Pi does not change the value of the variable turn
 while executing the while statement, Pi can will enter its critical section (progress) after
 at most one entry (bounded waiting)"

"

6.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization Hardware

■  Many systems provide hardware support for critical section code"

■  All solutions below based on the idea of locking!
●  Protecting critical regions via locks"

■  Uniprocessors – could disable interrupts"
●  Currently running code would execute without preemption"
●  Generally too inefficient on multiprocessor systems"

"
■  Modern machines provide special atomic hardware instructions"

! Atomic = non-interruptible"
●  Either test memory word and set value"
●  Or swap contents of two memory words"

6.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution to Critical-section Problem Using Locks
 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

6.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

test_and_set Instruction
"
■  Definition:"

 boolean test_and_set (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }
"

6.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution using test_and_set()

■  Shared boolean variable lock, initialized to FALSE"
■  Solution:"

do {
 while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

 /* remainder section */

} while (true);
"
 "

6.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded-waiting Mutual Exclusion with test_and_set

do {
 waiting[i] = true;
 key = true;
 while (waiting[i] && key)

 key = test_and_set(&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 /* remainder section */

} while (true);

6.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Sketch Proof
■  Mutual-exclusion: Pi enters its critical section only if either waiting[i]==false or

 key==false. The value of key can become false only if test_and_set() is
 executed. The first process to execute test_and_set() will find key==false; all
 others must wait. The variable waiting[i] can become false only if another process
 leaves its critical section; only one waiting[i] is set to false, maintaining the
 mutual-exclusion requirement."

!
■  Progress: since a process existing its critical section either sets lock to false or sets

 waiting[j] to false. Both allow a process that is waiting to enter its critical section
 to proceed."

"
■  Bounded-waiting; when a process leaves its critical section, it scans the array waiting

 in cyclic order (i+1, i+2, …,n-1,0,1,…i-1). It designates the first process in this
 ordering that is in the entry section (waiting[j]==true) as the next one to enter the
 critical section. Any process waiting to enter its critical section will thus do so within n-1
 turns."

"

6.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Mutex Locks
■  Previous solutions are complicated and generally inaccessible to application programmers"
■  OS designers build software tools to solve critical section problem"
■  Simplest is mutex lock!
■  To access the critical regions with it by first acquire() a lock then release() it"

●  Boolean variable indicating if lock is available or not 
"

■  Calls to acquire() and release() must be atomic"
●  Usually implemented via hardware atomic instructions"

■  But this solution requires busy waiting. This lock therefore called a spinlock!
●  Spinlock wastes CPU cycles due to busy waiting, but it does have one advantage in that no

 context switch is required when a process must wait on a lock, and a contest switch may take
 considerable time. Thus when locks are expected to be held for short times, spinlock is useful"

●  Spinlocks are often used in multiprocessor systems where one thread can “spin” on one
 processor while another thread performs its critical section on another processor"

"

6.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

acquire() and release()
acquire() {
 while (!available)

 ; /* busy wait */

 available = false;;

}

release() {

 available = true;

}

do {

 acquire lock

 critical section

 release lock

 remainder section

} while (true);

"

6.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semaphore
■  Semaphore S – integer variable"
■  Two standard operations modify S: wait() and signal()

●  Originally called P() and V()
■  It is critical that semaphore operations are executed atomically. We have to guarantee

 that no more than one process can execute wait() and signal() operations on the
 same semaphore at the same time. This is a critical section problem"
●  Disable interrupts in a single-processor system would work, but more complicated in a

 multiprocessor system"
"

■  The semaphore can only be accessed via two indivisible (atomic) operations"
wait (S) {

 while (S <= 0)
 ; // busy wait

 S--;
}

signal (S) {
 S++;

}

6.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semaphore Usage
■  Counting semaphore – integer value can range over an unrestricted domain"

●  Counting semaphore can be used to control access to a given resource consisting of a finite
 number of instances; semaphore value is initialized to the number of resource available"

■  Binary semaphore – integer value can range only between 0 and 1
●  This behaves similar to mutex locks!
!

■  Can implement a counting semaphore S as a binary semaphore"
■  Can solve various synchronization problems"
■  Consider P1 and P2 that shares a common semaphore synch, initialized to 0; it require S1 to

 happen before S2 !

P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;"

6.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semaphore Implementation
with no Busy waiting

■  With each semaphore there is an associated waiting queue"
■  Each entry in a waiting queue has two data items:"

●  value (of type integer)"
●  pointer to next record in the list"
"

■  Two operations:"
●  block – place the process invoking the operation on the appropriate waiting queue"
●  wakeup – remove one of processes in the waiting queue and place it in the ready queue"
"

■  Semaphore values may be negative, whereas this value can never be negative under
 the classical definition of semaphores with busy waiting."

"
■  If a semaphore value is negative, its magnitude is the number of processes waiting on

 the semaphore."
 "

6.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semaphore Implementation with
no Busy waiting (Cont.)

typedef struct{

 int value;

 struct process *list;

} semaphore;

wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {
 add this process to S->list;

 block();

 }

}

signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {
 remove a process P from S->list;

 wakeup(P);

 }

}

6.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock and Starvation
■  Deadlock – two or more processes are waiting indefinitely for an event that can be

 caused by only one of the waiting processes"
■  Let S and Q be two semaphores initialized to 1"

! ! P0 " P1"

 wait(S); wait(Q);

 wait(Q); wait(S);
 . .

 signal(S); signal(Q);
 signal(Q); signal(S);

■  Starvation – indefinite blocking !

●  A process may never be removed from the semaphore queue in which it is suspended.
 For instance, if we remove processes from the queue associated with a semaphore using
 LIFO (last-in, first-out) order."

6.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Priority Inversion
■  Priority Inversion – A scheduling problem when a lower-priority process holds a lock

 needed by a higher-priority process"
●  This situation becomes more complicated if the low-priority process is preempted in favour

 of another process with a higher priority"
"

■  Consider three processes – L, M and H, whose priorities follow the order L<M<H. "
●  Assume that process H requires resource R, which is currently being accessed by process

 L. Usually process H would wait for process L to finish using resource R. Now suppose M
 becomes runnable, thereby preempting process L. Indirectly, a process with a lower
 priority (M) has affected how long process H must wait for process L to relinquish resource
 R. This problem is known as priority inversion!

"
■  Priority-inheritance protocol: All processes that are accessing resources needed by a

 higher-priority process inherit the higher priority until they are finished with the
 resource. When they are finished, their priorities revert to their original values."
●  In the above example, process L would inherit the priority of process H temporarily, thereby

 preventing process M from preempting its execution. Process L relinquish its priority to its
 original value after finishing using resource R. Once resource R is available, process H, -
 not process M – would run next."

6.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Classical Problems of Synchronization

■  Classical problems of synchronization"

●  Bounded-Buffer Problem"

●  Readers and Writers Problem"

●  Dining-Philosophers Problem"

6.30! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded-Buffer Problem

■  n buffers, each can hold one item"

■  Semaphore mutex initialized to the value 1"

■  Semaphore full initialized to the value 0"

■  Semaphore empty initialized to the value n"

6.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer Problem (Cont.)

■  The structure of the producer process"

do {

 ...
 /* produce an item in next_produced */

 ...

 wait(empty);

 wait(mutex);

 ...
 /* add next produced to the buffer */

 ...

 signal(mutex);

 signal(full);

} while (true);

6.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer Problem (Cont.)

■  The structure of the consumer process"
"
do {

 wait(full);

 wait(mutex);

 ...
 /* remove an item from buffer to next_consumed */

 ...

 signal(mutex);

 signal(empty);

 ...
 /* consume the item in next consumed */

 ...
} while (true);

"

6.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Readers-Writers Problem
■  A data set is shared among a number of concurrent processes"

●  Readers – only read the data set; they do not perform any updates"
●  Writers – can both read and write  

"
■  Problem – allow multiple readers to read the data set at the same time"

●  Only one single writer can access the shared data at a time"

■  Several variations of how readers and writers are treated – all involve priorities. The
 simplest solution, referred as the first readers-writers problem, requires that no reader be
 kept waiting unless a writer has already gained access to the shared data"

■  Shared Data"
●  Data set"
●  Semaphore rw_mutex initialized to 1"
●  Semaphore mutex initialized to 1"
●  Integer read_count initialized to 0"

6.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Readers-Writers Problem (Cont.)

■  The structure of a writer process"
 "
do {

 wait(rw mutex);

 ...
 /* writing is performed */

 ...

 signal(rw mutex);

} while (true);

"
"
 "

6.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Readers-Writers Problem (Cont.)

■  The structure of a reader process"
 "
■  do { 

wait(mutex); 
read count++; 
if (read count == 1) "

■  wait(rw mutex); signal(mutex); "
■  ... 

/* reading is performed */ "
■  ... wait(mutex); 

read count--; 
if (read count == 0) "

■  signal(rw mutex); signal(mutex); "
■  } while (true); 

"
"
"
 " 6.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Readers-Writers Problem Variations

■  First variation – no reader kept waiting unless writer has gained access to use shared object"

■  Second variation – once writer is ready, it performs write asap. In another word, if a writer is
 waiting to access the object (implying that there are readers reading at the moment), no new
 readers may start reading (i.e., they must wait after the writer updates the object)."

"
■  Both may have starvation leading to even more variations"

■  Problem is solved on some systems by kernel providing reader-writer locks, in which
 multiple processes are permitted to concurrently acquire a reader-writer lock in red mode, but
 only one process can acquire the reader-writer lock for writing."

6.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Dining-Philosophers Problem

■  Philosophers spend their lives thinking and eating"
■  They do not interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time)

 to eat from the bowl"
●  Need both chopsticks to eat, then release both when done"

■  In the case of 5 philosophers"
●  Shared data "

!  Bowl of rice (data set)"
!  Semaphore chopstick [5] initialized to 1"

6.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Dining-Philosophers Problem Algorithm
■  The structure of Philosopher i:"

do { "
 wait (chopstick[i]);"

" wait (chopStick[(i + 1) % 5]);"
""
" // eat"

"
" signal (chopstick[i]);"
" signal (chopstick[(i + 1) % 5]);"
""

 // think"
"
} while (TRUE);"
"

■  This guarantees that no two neighbours are eating simultaneously."
■  What is the problem with this algorithm? – Deadlock"

●  Suppose all five philosophers become hungry at the same time, and each grabs its
 left chopstick … while waiting for its right chopstick"
"

6.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Problems with Semaphores

■  Semaphores provides a convenient and effective mechanism for process synchronization,
 using them incorrectly can result in timing errors that are difficult to detect, since such
 errors happen only if particular execution sequences take place, and these sequences do
 not always occur"

"
■  Incorrect use of semaphore operations: 

"

●  signal (mutex) …. wait (mutex)

●  wait (mutex) … wait (mutex)

●  Omitting of wait(mutex) or signal(mutex) (or both)"

■  Deadlock and starvation"

6.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Monitors
■  A high-level abstraction that provides a convenient and effective mechanism for

 process synchronization"
■  An abstract data type or ADT, encapsulates data with a set of functions to operate on

 the data."
■  The internal variables only are accessible by code within the procedure"
■  Only one process may be active within the monitor at a time – mutual exclusion"

"
monitor monitor-name"
{"
"// shared variable declarations"
"procedure P1 (…) { …. }"

"
"procedure Pn (…) {……}"

"
 Initialization code (…) { … }"
"}"

}"

6.41! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Schematic View of a Monitor

6.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Condition Variables

■  condition x, y;"

■  Two operations on a condition variable:"
●  x.wait () – a process that invokes the operation is suspended until x.signal ()
●  x.signal () – resumes one of processes (if any) that invoked x.wait ()

!  If no x.wait () on the variable, then it has no effect on the variable"

6.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Monitor with Condition Variables

6.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Condition Variables Choices

■  If process P invokes x.signal (), with Q in x.wait () state, what should happen
 next?"
●  If Q is resumed, then P must wait, since they can not be inside the monitor simultaneously"

■  Options include"
●  Signal and wait – P either waits until Q leaves monitor or waits for another condition"
●  Signal and continue – Q either waits until P leaves the monitor or waits for another

 condition"
"

■  Both have pros and cons – language implementer can decide"
■  Monitors implemented in Concurrent Pascal compromise"

●  P executing signal immediately leaves the monitor, Q is resumed"
"

6.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution to Dining Philosophers

monitor DiningPhilosophers"
 { "

"enum { THINKING; HUNGRY, EATING) state [5] ;"
"condition self [5];"

"
"void pickup (int i) { "
" state[i] = HUNGRY;"
" test(i);"
" if (state[i] != EATING) self [i].wait;"
"}"
""

 void putdown (int i) { "
" state[i] = THINKING;"

 // test left and right neighbors"
" test((i + 4) % 5);"
" test((i + 1) % 5);"

 }"
""

6.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution to Dining Philosophers (Cont.)

"
"void test (int i) { "
" if ((state[(i + 4) % 5] != EATING) &&"
" (state[i] == HUNGRY) &&"
" (state[(i + 1) % 5] != EATING)) { "
" state[i] = EATING ;"
" " self[i].signal () ;"
" }"
" }"

"
 initialization_code() { "

" for (int i = 0; i < 5; i++)"
" state[i] = THINKING;"
!}"

}"

6.47! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

"
■  Each philosopher i invokes the operations pickup() and putdown() in the following

 sequence:"
"
 DiningPhilosophers.pickup (i);"
"
 EAT"
"
 DiningPhilosophers.putdown (i);"
"
■  No deadlock, but starvation is possible"
"
"
 !

Solution to Dining Philosophers (Cont.)

6.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Monitor Implementation Using Semaphores
■  Variables "

" "semaphore mutex; // (initially = 1)"
" "semaphore next; // (initially = 0)"
" "int next_count = 0; 
"

■  A signalling process must wait until the resumed process either leaves or waits, then
 signalling processes can use next (initialized to 0) to suspend themselves. An integer
 variable next_count is used to count the number of processes suspended on next

 "
■  Each external function F will be replaced by"

" "wait(mutex);"
" " …" "" "

 body of F;"
"

" " " …"
" "if (next_count > 0)"
" " signal(next) /* the process giving monitor by letting another enter */"
" "else "
" " signal(mutex); 
"

■  Mutual exclusion within a monitor is ensured"

6.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Monitor Implementation – Condition Variables

■  For each condition variable x, we have:"
"

" "semaphore x_sem; // (initially = 0)"
" "int x_count = 0; 
"

■  The operation x.wait can be implemented as:"
" ""
" "x_count++;"
" "if (next_count > 0)"
" " "signal(next); "
" "else"
" " "signal(mutex);"
" "wait(x_sem);"
" "x_count--;"

!
■  The process checks if there are other processes waiting to enter the monitor (next_count), if

 there is, let one of them enter; otherwise it relinquishes the monitor. After that, it suspends itself
 by wait(x_sem). The variable x_count-– will be executed when it is waked up later by
 another process ! !!

6.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Monitor Implementation (Cont.)

■  The operation x.signal can be implemented as: 
"
" "if (x-count > 0) {"
" " "next_count++;"
" " "signal(x_sem); " " ""
" " wait(next);"
" " "next_count--;"
" "}"
! ! ""

■  If there is no process waiting on condition x, x.signal has not effect"
"
■  The process after waking up a process waiting on x_sem, will need to give up the monitor,

 and join the entry queue (next) to wait for its next turn to enter the monitor"
 "
■  This implementation is applicable to the definitions of monitors given by both Hoare and

 Brinch-Hansen"

6.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization Examples

■  Solaris"

■  Windows XP"

■  Linux"

■  Pthreads"

6.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solaris Synchronization
■  Implements a variety of locks to support multitasking, multithreading (including real-time

 threads), and multiprocessing"

■  Uses adaptive mutex for efficiency when protecting data from short code segments, less
 than a few hundred instructions"
●  Starts as a standard semaphore implemented as a spinlock in a multiprocessor system"
●  If lock held, and by a thread running on another CPU, spins to wait for the lock to become

 available"
●  If lock held by a non-run-state thread, block and sleep waiting for signal of lock being released"

■  Uses condition variables "
"
■  Uses readers-writers locks when longer sections of code need access to data. These are

 used to protect data that are frequently accessed, but usually in a read-only manner. The
 readers-writer locks are relatively expensive to implement."

"

6.53! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Windows Synchronization
■  The kernel uses interrupt masks to protect access to global resources on uniprocessor systems"

■  The kernel uses spinlocks in multiprocessor systems"
●  For efficiency, the kernel ensures that a thread will never be preempted while holding a spinlock"

■  For thread synchronization outside the kernel, Windows provides dispatcher objects, threads
 synchronize according to several different mechanisms, including mutex locks, semaphores,
 events, and timers"

"
■  Events are similar to a condition variable; they may notify a waiting thread when a desired

 condition occurs"
■  Timers are used to notify one or more thread that a specified amount of time has expired"
■  Dispatcher objects either signaled-state (object available) or non-signaled state (thread will

 block)"

6.54! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Linux Synchronization

■  Linux:"
●  Prior to kernel Version 2.6, disables interrupts to implement short critical sections"
●  Version 2.6 and later, fully preemptive kernel"

■  Linux provides:"
●  semaphores"
●  spinlocks"
●  reader-writer versions of both"

■  On single-CPU system, spinlocks replaced by enabling and disabling kernel preemption"

6.55! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pthreads Synchronization
■  Pthreads API is OS-independent, which is available for programmers at the user

 level and is not part of any particular kernel."

■  It provides:"
●  mutex locks"
●  condition variables 

"
■  Non-portable extensions include:"

●  read-write locks"
●  spinlocks"

