Chapter 5: Process
Scheduling
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~7 Objectives

® Tointroduce CPU scheduling, which is the basis for multiprogrammed operating systems

® To describe various CPU-scheduling algorithms

® To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

©® To examine the scheduling algorithms of several operating systems
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~7 Basic Concepts
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® Maximum CPU utilization obtained with
multiprogramming

© CPU burst and I/O burst cycles — Process
execution consists of a cycle of CPU execution
and 1/0 wait

©® CPU burst followed by 1/0 burst

©® CPU burst distribution is of main concern
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frequency

16 24 32 40
burst duration (milliseconds)

® The extensive measurement of CPU bursts shows that the CPU burst duration is consisted of
a large number of short CPU bursts and a small number of long CPU bursts.

® This curve is generally characterized as exponential or hyper-exponential

Operating System Concepts — 9t Edition 55 Silberschatz, Galvin and Gagne ©2013

Dispatcher

© Dispatcher is the module that gives control of the CPU to the process selected by the short-term
scheduler; this involves:
©  switching context
©  switching to user mode
©  jumping to the proper location in the user program to restart that program

©® Dispatch latency — time it takes for the dispatcher to stop one process and start another
running

© The dispatcher should be as fast as possible, since it is invoked during each process switch
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CPU Scheduler

©® Short-term scheduler selects from among the processes in ready queue, and allocates the
CPU to one of them

© Queue may be ordered in various ways
® CPU scheduling decisions may take place in the following four circumstances:
1. Switches from running to waiting state (1/O request or wait())
2. Switches from running to ready state (interrupts)
3. Switches from waiting to ready (the completion of 1/0)
4. Terminates
©® Scheduling under 1 and 4 is nonpreemptive
® The process releases the CPU voluntarily
® Scheduling under 2 and 3 is preemptive, which an result in race condition (discussed in
Chapter 6)
©  Consider access to shared data
©  Consider preemption while in kernel mode
©  Consider interrupts occurring during crucial OS activities
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Scheduling Criteria

© CPU utilization — keep the CPU as busy as possible

©® Throughput — # of processes that complete their execution per time unit

©® Turnaround time — amount of time to execute a particular process. The interval from the time
of submission of a process to the time of completion

©® Waiting time — the sum of the periods that a process spent waiting in the ready queue

“ Noticing that CPU scheduling algorithm does not affect the total amount of time during which a
process executes (on CPU) or does I/0. It affects only the amount of time that a process spends waiting
in the ready queue.

©® Response time — amount of time it takes from when a request was submitted until the first
response is produced, not output, in a time-sharing or interactive environment
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»7" Scheduling Algorithm Optimization Criteria »”" First-Come, First-Served (FCFS) Scheduling

e

® Max CPU utilization Process Burst Time
® Max throughput Py 24
P, 3
® Min turnaround time Pz
® Min waiting time
. . ® Suppose that the processes arrive in the order: P, , P, , P
® Min response time The Gantt Chart for the schedule is:
P, P, P,
0 24 27 30
® Waiting time for P, =0; P, = 24; P;=27
® Average waiting time: (0 + 24 +27)/3 =17
©® The FIFO scheduling algorithm is nonpreemptive. Once the CPU has been allocated to a process,
that process keeps the CPU until it releases the CPU, either by terminating or by requesting 1/0
S =
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S FCFS Scheduling (Cont.) 5% Shortest-Job-First (SJF) Scheduling

Suppose that the processes arrive in the order: ® Associate with each process the length of its next CPU burst

Py, Ps, Py ©  Use these lengths to schedule the process with the shortest time
® The Gantt chart for the schedule is: © If the next CPU bursts of two processes are the same, FCFS scheduling is used to break the tie

©® SJF is optimal — gives minimum average waiting time for a given set of processes

P, Py P
© Moving a short process before a long process decreases the waiting time of the short process

more than it increases the waiting time for the long process. Consequently, the average (or the
0 3 6 30 total) waiting time decreases

©  The difficulty is knowing the length of the next CPU request
Waiting time for P, =6,P,=0.P;=3
Average waiting time: (6+0+3)/3=3
Much better than previous case
Convoy effect - short process behind long process
Consider one CPU-bound and many I/O-bound processes
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Example of SJF

©® SJF scheduling chart

Process

Py
P,
Py
Py

Burst Time

6

8
7
3

P4

P

P3

P2

0

® Average waiting time =(3+16+9+0)/4=7
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Prediction of the Length of the

Next CPU Burst

CPU burst (t)
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/

"guess” (1)
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»7:} \Determining Length of Next CPU Burst

©® Can only estimate the length — should be similar to the previous one
© Then pick the process with the shortest predicted next CPU burst

® Can be done by using the length of previous CPU bursts, using exponential averaging

A O N~

® Preemptive version called shortest-remaining-time-first

. t, = actual length of n" CPU burst

. 7p4 = predicted value for the next CPU burst

. a,0<a <1

.Define: 7, =at +(1-a),.

Commonly, o setto %%
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“»77 Examples of Exponential Averaging
® a=0
O T =T,
© Recent history does not count
® a=1
Ot =al
©  Only the actual last CPU burst counts
® |f we expand the formula, we get:
Thq ot H(1-)at, -1+ ...
H1-a)ot, j+ ..
H1-a) 't
°

Since both o and (1 - o) are less than or equal to 1, each successive term has less weight than

its predecessor, i.e., the impact on the estimate is reduced exponentially.
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~3%77 Preemptive and Nonpreemptive SJF ~“%7/ Example of Shortest-Remaining-Time-First

©® The SJF can be either nonpreemptive or preemptive ©® Now we add the concepts of varying arrival times and preemption to the analysis
® The choice arises when a process arrives at the ready queue while another process is still Process Arrival Time Burst Time
executing on the CPU P, 0 8
P 1 4
©® The next CPU burst of the newly arrived process may be shorter than what is left of the Py 2 9
currently executing process. If this is the case, the next CPU burst length of this newly arrived P, 3 5
process will be shorter than the CPU burst lengths of all processes currently in the ready ®  Preemptive SJF Gantt Chart

queue (the SJF determines)

® A preemptive SJF algorithm will pre-empt the currently running process (returning to the Py Py Py Py Py
ready queue with the remaining CPU time), whereas a nonpreemptive SJF algorithm will
allow the currently running process to finish its CPU burst

0 1 5 10 17 26

. . . X . . . ) ©® Average waiting time = [(10-1)+(1-1)+(17-2)+5-3))/4 = 26/4 = 6.5 msec
©® Preemptive SJF scheduling algorithm is sometime called shortest-remaining-time first

scheduling
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7 Priority Scheduling 7 Example of Priority Scheduling

©® A priority number (integer) is associated with each process Process Burst Time Priority
P, 10 3
® The CPU is allocated to the process with the highest priority (smallest integer = highest priority) P, 1 1
©  Preemptive Ps 2 4
© Nonpreemptive Py 1 5
P 5 2
©® SJF is priority scheduling where priority is the inverse of predicted next CPU burst time ®  Priority scheduling Gantt Chart
®  Priority scheduling can be either preemptive or nonpreemptive P, Ps P Ps Py

® Major Problem = Starvation — low priority processes may never execute

. X 3 . ®  Average waiting time = 8.2 msec
©® Solution = Aging — as time progresses increase the priority of the process
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o Round Robin (RR)

©® A round-robin scheduling is designed especially for time-sharing systems. It is similar to FCFS
scheduling, but preemption is added to restrict the maximum amount of time that a process can
occupy the CPU, thus enable the system to switch between processes

® Each process gets a small unit of CPU time (time quantum g), usually 10-100 milliseconds.
After this time has elapsed, the process is preempted and added to the end of the ready queue
(as a circular queue)

® |f there are n processes in the ready queue and the time quantum is g, then each process gets
1/n of the CPU time in chunks of at most g time units at once. No process waits more than (n-
1)q time units

® Timer interrupts every quantum to schedule next process
® Performance

q large = FIFO
q small = g must be large with respect to context switch, otherwise overhead is too high

X
S g
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“3%”" Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

How a smaller time quantum increases the number of context switches

« 9%
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“5%7 Example of RR with Time Quantum = 4

Process Burst Time
P, 24
P, 3
Py 3
©® The Gantt chart is:
P, P, Py P, P, P, P, P,
0 4 7 10 14 18 22 26 30

©® Typically, higher average turnaround than SJF, but better response time
q should be large compared to context switch time
©® qusually 10ms to 100ms, context switch < 10 microseconds
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() Turnaround Time Varies With
o .
@ The Time Quantum
process [ time
12,5 P, =
12.0 - P 3
P, 1
g 15k P, 7
S
S 110
o
g 105} » The average turnaround time does not
f necessarily improves as the time
> 100 quantum size increases
g g5k + In general, the average turnaround time
© can be improved if most processes finish
9.0 |- their next CPU burst in a single quantum
B « The time quantum can not be too big, in
which RR degenerates to an FCFS policy
1 o L * A rule of thumb: 80% of CPU bursts
1.2 3 4 5 6 7 should be shorter than the time
time quantum quantum q

VD
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7 Multilevel Queue

©® Ready queue is partitioned into separate queues, e.g.:
©  foreground (interactive)
background (batch)

® Processes are permanently assigned to one queue when they enter the system, based on some
property of the process, such as memory size, priority, or process type

® Each queue has its own scheduling algorithm:
©  foreground - RR
©  background — FCFS

©® Scheduling must be done among the queues”
©  Fixed-priority preemptive scheduling; (i.e., serve all from foreground then from background).
Possibility of starvation.
©  Time slice — each queue gets a certain amount of CPU time which it can schedule amongst its
processes; i.e., 80% to foreground in RR and 20% to background in FCFS

A
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Multilevel Feedback Queue

©® A process can move between the various queues; aging can be implemented this way

© Multilevel-feedback-queue scheduler defined by the following parameters:
©  the number of queues
scheduling algorithms for each queue
< method used to determine when to upgrade a process
©  method used to determine when to demote a process
< method used to determine which queue a process will enter when that process needs service
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Multilevel Queue Scheduling

interactive processes

interactive editing processes

batch processes

student processes

P

lowest priority
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Example of Multilevel Feedback Queue

® Three queues:
©  Qy— RR with time quantum 8 milliseconds
Q- RRtime quantum 16 milliseconds
© Q,-FCFs

® Scheduling — preemptive

AV

Anew job enters queue Q, which is served
FCFS

» When it gains CPU, job receives 8
milliseconds

quantum = 16

AV

» If it does not finish in 8 milliseconds, job is
moved to queue Q,
At Q, job is again served FCFS and receives
16 additional milliseconds

» If it still does not complete, it is preempted
and moved to queue Q,

©  Aprocess in queue 1 or 2 will be preempted by
a process arriving for queue 0
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‘f'%«':} Thread Scheduling
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When the OS supports threads, the kernel-level threads are being
scheduled, not processes

©  User-level threads are managed by a thread library

The OS typically uses an intermediate data structure between user
and kernel threads — lightweight process (LWP)

Appears to be a virtual processor on which process can schedule user
threads to run on it

© Each LWP attached to kernel thread

3 *— user thread

" LWP | «—— lightweight process
Many-to-one and many-to-many models, thread library schedules
user-level threads to run on LWP I

Vi
Known as process-contention scope (PCS) since scheduling ( k )e——kemel thread
competition is within the process ~

Typically done via priority set by programmer

Kernel thread scheduled onto available CPU is system-contention
scope (SCS) — competition among all threads in system

Systems using one-to-one mapping model, such as Windows, Linux, S
and Solaris, schedule threads using only SCS —
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NUMA and CPU Scheduling
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CPU CPU

S/

o
% fast access
S

memory memory

fast access

computer

« The main-memory architecture of a system can affect processor affinity
« Note that memory-placement algorithms can also consider affinity
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&$;N) Multiple-Processor Scheduling

©® CPU scheduling more complex when multiple CPUs are available

® Homogeneous processors within a multiprocessor

® Asymmetric multiprocessing — only one processor accesses the system data structures,
alleviating the need for data sharing. The other processors execute only user code

® Symmetric multiprocessing (SMP) — each processor is self-scheduling, all processes in
common ready queue, or each has its own private queue of ready processes

©  Currently, most common

® Processor affinity — process has affinity for processor on which it is currently running, esp. the
cache content

©  Soft affinity — the OS attempt to keep a process running on the same processor, not guaranteeing it
€ Hard affinity — allow a process to specify a subset of processors on which it may run
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*"(?;f’ Multiple-Processor Scheduling — Load Balancing
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©® On SMP systems, need to keep all CPUs loaded for efficiency

® Load balancing attempts to keep workload evenly distributed

©® Push migration — a specific task periodically checks the load on each processor, and if it finds
an imbalance, pushes task from overloaded CPU to idle or less-busy CPUs

® Pull migration — idle processors pulls waiting task from a busy processor

® Push and pull migration need not to be mutually exclusive and are in fact often implemented in
parallel on load-balancing systems

A
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Multicore Processors

® Recent trend to place multiple processor cores on same physical chip

® Faster and consumes less power

© Multiple threads per core also growing

® Memory stall: a situation when a processor accesses memory, it spends a significant amount of
time waiting for the data to become available, due to various reasons such as cache miss

©® The scheduling can takes advantage of memory stall to make progress on another thread while
memory retrieve happens

© If one thread stalls while waiting for memory, the core can switch to another thread. This
becomes a dual-thread processor core, or two logical processors

A dual-threaded, dual-core system presents four logical processors to the operating system
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o Algorithm Evaluation

How to select CPU-scheduling algorithm for a particular system - difficult
® Determine criteria, then evaluate algorithms
Deterministic modeling
C  Type of analytic evaluation

C  Takes a particular pre-determined workload and defines the performance of each
algorithm for that workload

® Consider 5 processes arriving at time 0:

Process  Burst Time

Py 10
P, 29
Py 3
Py 7
Ps 12
G
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Multithreaded Multicore System

compute cycle

memory stall cycle
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Deterministic Evaluation

©® For each algorithm, calculate minimum average waiting time
© Simple and fast, but requires exact numbers for input, applies only to those inputs

©  FCSis 28ms:
| P1 | P2 PS P4 | P5 ‘
0 10 39 42 49 61
© Non-preemptive SFJ is 13ms:
I A ’ 2 Py B ‘
[ 10 20 32 61
© RRis 23ms:
Lol o] n]n ]
0 10 20 23 30 40 50 52 61
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~7 Queueing Models

® Suppose the distribution pf CPU and I/O bursts are known, which may be measured and then
approximated or simply estimated

® Describes the arrival of processes, and CPU and I/O bursts probabilistically
© Commonly exponential, and described by mean
Computes average throughput, utilization, waiting time, etc.
® Computer system described as network of servers, each with queue of waiting processes
© Knowing arrival rates and service rates
Computes utilization, average queue length, average wait time, etc.
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® Queueing models limited for a very few known distributions in order to compute the
performance mathematically
® Simulations more accurate and general
©  Programmed model of computer system
©  Clock is a variable
©  Gather statistics indicating algorithm performance
©  Data to drive simulation gathered via
» Random number generator according to probabilities
» Distributions defined mathematically or empirically
» Trace tapes record sequences of real events in real systems

« 9%
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> Little’s Formula

n = average queue length
W = average waiting time in queue
A = average arrival rate into queue

Little’s law — in steady state, processes leaving queue must equal processes arriving, thus
n=AxW

© Valid for any scheduling algorithm and arrival distribution

® For example, if on average 7 processes arrive per second, and normally 14 processes in
queue, then average wait time per process = 2 seconds
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(™ Evaluation of CPU Schedulers
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55N &
r by Simulation
. . performance
simulation > statistics
for FCFS
FCFS
coe
CPU 10
/0 213
actual CPU 12 performance
process —=>{1/0 112 simulation =  statistics
execution CPU 2 for SJF
110 147
CPU 173 SIF
coe
trace tape
performance
simulation > statistics
for RR (g = 14)
RR (g = 14)
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Implementation

® Even simulations have limited accuracy
® Justimplement new scheduler and test in real systems
@ High cost, high risk
@ Environments vary
® Most flexible schedulers can be modified per-site or per-system
® Or APIs to modify priorities
But again environments vary
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