e

ﬁ Chapter 4: Multithreaded Programming

. B Overview
") .
Chapter 4: Multithreaded = Wultiore Programming
B Multithreading Models
-
Programming = Tveadng lssues
B Operating System Examples
| L]
=
SR
5
Operating System Concepts — 9" Edition Silberschatz, Galvin and Gagne ©€2013 Operating System Concepts — 9" Edition 42 Silberschatz, Galvin and Gagne ©2013
2
. S o
Objectives > Motivation
B Tointroduce the notion of a thread—a fundamental unit of CPU utilization that forms the basis B Most modern applications or/and programs are multithreaded

of multithreaded computer systems

W To examine issues related to multithreaded programming

Operating System Concepts ~ 9t Edition 43

Multithreaded Server Architecture

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts - 9" Edition 44

B Threads run within an application or a process
W Multiple tasks with the application can be implemented by separate threads
® Update display
® Fetch data
® Spell checking
® Answer a network request
B Process creation is heavy-weight while thread creation is light-weight
W Can simplify code, increase efficiency
B Kernels are generally multithreaded

4 I
Silberschatz, Galvin and Gagne ©2013

Benefits

(2) create new
(1) request thread to service

— the request o |
client server thread

(8) resume listening
for additional
client requests

W Asingle application may be required to perform several similar tasks. For example a busy web
server may process thousands of web requests concurrently. Creating one process for each client
request is cumbersome (resource-intensive) and time-consuming

W Asingle application may need to do multiple tasks. For example, a web browser (client) need to
display images or text (one thread) while another thread retrieves data from the network

Operating System Concepts - 9% Edition 45

Silberschatz, Galvin and Gagne €2013 Operating System Concepts 8" Edition 46

Responsiveness — may allow continued execution if part of process is blocked, especially important
for user interfaces

Resource Sharing — threads with a process share resources of the process by default, easier than
shared memory or message passing that must be explicitly arranged by the programmer

Economy —thread creation is much cheaper than process creation, thread switching also has much
lower overhead than context switching (switching to a different process)

Scalability — A process can take advantage of multiprocessor architectures by running multiple
threads of the process simultaneously on different processors (CPUs).

=)

)

L;

Silberschatz, Galvin and Gagne €201

@

Multicore Programming Concurrency vs. Parallelism

. . . C i ingl .
m Multicore or multiprocessor systems putting pressure on programmers to make better use of - on sing! system:
the multiple computing cores. Programming challenges in multicore systems include:

eldentifying tasks: to divide applications into separate, concurrent tasks single core ‘ T ‘ T2 ‘ T3 ‘ Ta ‘ T | T2 ‘ Ts ‘ T4 ‘ T ‘ e ‘
eBalance: tasks perform equal work of equal value
eData splitting

eData dependency

time

eTesting and debugging W Parallelism on a multi-core system:

m Parallelism implies a system can perform more than one task simultaneously

® Concurrency supports more than one task making progress core 1 T1 T3 T1 T3 T1 naa
eSingle processor / core, scheduler providing concurrency

B Types of parallelism

eData parallelism — distributes subsets of the same data across multiple cores, same operation on each

eTask parallelism — distributing threads across cores, each thread performing unique operation
’ o P 9 unique op core 2 To Ty To Ty T, .
Y time A
) LA
o A’\
Operating System Concepts — 9™ Edition a7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts — 9" Edition 48 Silberschatz, Galvin and Gagne ©2013

-

Amdahl’s Law : };N" ‘ Single and Multithreaded Processes

B Identifies performance gains from adding additional cores to an application that has both serial and
parallel components

‘ code H data H files ‘ ‘ code H data H files ‘
B Sis serial portion

B Nprocessing cores N N)
‘ stack ‘ ‘ registers ‘ ‘ registers ‘ ‘ registers ‘
1
speedup < 5] ‘ stack ‘ ‘ stack ‘ ‘ stack ‘
s N
B If application is 75% parallel / 25% serial, moving from 1 to 2 cores results in speedup of 1.6 times
B As Napproaches infinity, speedup approaches 1/ S thread —— <«—— thread
Serial portion of an application has disproportionate effect on performance gained by
adding additional cores

m single-threaded process multithreaded process /,;%\)\
Operating System Concepts — g Edition 49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts - 9t Edition 410 Silberschatz, Galvin and Gagne 62013
=

Thread State Thread State (Cont.)

W Each Thread has a Thread Control Block (TCB) B State shared by all threads in process/address space
@ Execution State: CPU registers, program counter, pointer to stack @ Contents of memory (global variables, heap)
@ Scheduling info: State (more later), priority, CPU time ® /O state (file system, network connections, etc.)

@ Accounting Info:
@ Various Pointers (for implementing scheduling queues)
@ Pointer to enclosing process: PCB

W State “private” to each thread

® Keptin TCB [¥] Thread Control Block
W In Nachos: “thread” is a class that includes the TCB @ CPU registers (including, program counter)

W OS keeps track of TCBs in protected memory ® Execution stack — what is this?
® Array, or Linked List, or ...
W Execution Stack
® Parameters, temporary variables
@ Keep program counters while called procedures are executing

A

Operating System Concepts — 9t Edition a1 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts - 9% Edition 412 Silberschatz, Galvin and Gagne ©2013

Lifecycle of a Thread

and
& -7

Ready Queue And Various I/O Device Queues

1/0 or event completion

— - y
\scheduler dispatch 1/0 or event wait

waiting

B As athread executes, it changes state:
® new: The thread is being created
e ready: The thread is waiting to run
@ running: Instructions are being executed
® waiting: Thread waiting for some event to occur
e terminated: The thread has finished execution
B “Active” threads are represented by their TCBs
@ TCBs organized into queues based on their states

N
new admitted interrupt exit_..~{ terminated
= N
- s .
= Ty
ready (running
5 7

B Thread not running TCB is in some scheduler queue
® Separate queue for each device/signal/condition
@ Each queue can have a different scheduler policy

Operating System Concepts - 9 Edition 413

-

Silberschatz, Galvin and Gagne ©2013

-\
" Examples of Multithreaded Programs

Ready — Link Link
Queue Registers Registers Registers
Other Other Other
Tape State State State
Unit 0 TCB, TCBg TCB,g
Lﬁﬁko Link Link [~
' Registers Registers| =
Other Other
Disk m State State
Unit 2 = TCB, TCB,
Ener [THoag |t "L
Registt =
Newk 0 ~omer |
N State /f‘«:\\
.) TCB, |
. Operating System Concepts — 9 Edition 414 Silberschatz, Galvin and Gagm; 2013

-

: ?;’\ ‘User Threads and Kernel Threads

B Embedded systems
® Elevators, Planes, Medical systems, Wristwatches
@ Single Program, concurrent operations

B Most modern OS kernels

@ Internally concurrent to deal with concurrent requests by multiple users

@ But no protection needed within kernel
B Database Servers
® Access to shared data by many concurrent users
@ Also background utility processing must be done
B Network Servers
® Concurrent requests from network
® Again, single program, multiple concurrent operations
@ File server, Web server, and airline reservation systems
W Parallel Programming (More than one physical CPU)
® Split program into multiple threads for parallelism

Operating System Concepts ~ 9t Edition 415

Multithreading Models

Silberschatz, Galvin and Gagne ©2013

W Support for threads may be provided at either the user level, for user threads, or by the

kernel, for kernel threads

W User threads - management done by user-level threads library without kernel support

W Three primary thread libraries:
® POSIX Pthreads
® Win32 threads
e Javathread

m Kernel threads - supported by the kernel. Virtually all general-purpose operating
systems support kernel threads, including:

® Windows
® Solaris

® Linux

® MacOS X

Operating System Concepts - 9" Edition

Many-to-One

Ultimately, a relationship must exist between user threads and kernel threads.

=)

)

Silberschatz, Galvin and Gagne ©2013

® Many-to-One
B One-to-One

B Many-to-Many

Operating System Concepts - 9% Edition 447

Silberschatz, Galvin and Gagne €2013

B Many user-level threads mapped to single kernel thread

B One thread blocking causes all to block

B Multiple threads may not run in parallel on a multicore
system because only one may be in kernel at a time

B Few systems currently use this model
B Examples:

® Solaris Green Threads
® GNU Portable Threads

A

Operating System Concepts - 9* Edition

-

=

<«— user thread

<«— kernel thread

Silberschatz, Galvin and Gagne €2013

AR

One-to-One

Many-to-Many Model

W Each user-level thread maps to kernel thread

W Creating a user-level thread creates a kernel thread

m More concurrency than many-to-one

® Number of threads per process sometimes restricted due to overhead

W Examples
® Windows NT/XP/2000

® Linux
® Solaris 9 and later

<«— user thread

=
® & G

Operating System Concepts - 9 Edition 4.19

(W ';)’
> Two-level Model

)

¥

Silberschatz, Galvin and Gagne 2013 Operating System Concepts - 9" Edition 4.20

Allows many user level threads to be mapped to
many kernel threads

Allows the operating system to create a sufficient
number of kernel threads
; ;.— user thread

Solaris prior to version 9

Windows NT/2000 with the ThreadFiber package

<«— kernel thread

S
S

2z

4 X
Silberschatz, Galvin and Gagne ©2013

)

) ; i
u«yf Thread Libraries

B Similar to M:N, except that it also allows a user thread to be bound to kernel thread

B Examples

e IRIX ; ;
HP-UX

.
® Trué4 UNIX
@ Solaris 8 and earlier

«— user thread

ANN
ANN

W Thread library provides programmer with API for creating and managing threads

B Two primary ways of implementing

e Library entirely in user space with no kernel support. This means that invoking a function
in the library results in a local function call in user space, and not a system call

o Kernel-level library supported directly by the OS

B Three main thread libraries are in use today:
® POSIX Pthreads
® Windows
e Java

@ <«— kemnel thread

Operating System Concepts - 9" Edition 421 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts - 9" Edition 422 Silberschatz, Galvin and Gagne €2013

Threading Issues "??} Semantics of fork() and exec()

Semantics of fork() and exec() system calls B Does fork () duplicate only the calling thread or all threads?
B Signal handling ® Some UNIX have two versions of fork

® Synchronous and asynchronous ® If exec() is called immediately after forking, duplicating all threads is unnecessary, as the
program specified in the parameters to exec() will replace the entire process

W Thread cancellation of target thread

H E lly work: normal — replace the running pr including all thr
o Asynchronous or deferred xec () usually works as normal — replace the running process including all threads

B Thread-local storage

B 4 B

Operating System Concepts - 9% Edition 423 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts - 9° Edition 28 Silberschatz, Galvin and Gagne ©2013

Signal in UNIX

& -7

Signal Handling

B Signals are in UNIX systems to notify a process that a particular event has occurred u

B A signal may be received either synchronously or asynchronously, depending on the
source of and the reason for the event being signalled. All signals follow the same

pattern: "
® Signal is generated by the occurrence of a particular event

® Signal is delivered to a process

® Once delivered, the signal must be handled -

B Examples of synchronous signal include illegal memory access and division of 0.
Synchronous signals are delivered to the same process that performed the operation
that caused the signal

B When a signal is generated by an event external to a running process, that process
receives the signal asynchronously. Examples include terminating a process with n
specific keystrokes (such as <control><C>) and having a timer expire

)
b

Operating System Concepts - 9 Edition Silberschatz, Galvin and Gagne ©2013

Thread Cancellation

Operating System Concepts - 9" Edition

A signal may be handled by one of the two possible handlers: has occurred
® A default signal hander
® A user-defined signal handler

Every signal has default handler that kernel runs when handling signal
® User-defined signal handler can override the default handler
® For single-threaded, signal delivered to process

Where should a signal be delivered a multi-threaded program?
® Deliver the signal to the thread to which the signal applies

® Deliver the signal to every thread in the process

® Deliver the signal to certain threads in the process

® Assign a specific thread to receive all signals for the process

The method for delivering a signal depends on the type of signal
® Synchronous signals need to be delivered to the thread causing the signal, not other threads
® Terminating a process signal should be sent to all threads within the process

Silberschatz, Galvin and Gagne ©2013

Thread-Local Storage

B Thread cancellation involves terminating a thread before it has completed. Example,

® Multiple threads are concurrently searching through a database, one thread returns
the result, the remaining threads might be cancelled

W Thread to be canceled is target thread
B Cancellation of a target thread may occur in two different scenarios:

® Asynchronous cancellation terminates the target thread immediately
® Deferred cancellation allows the target thread to periodically check if it should be cancelled

® This involves in reclaiming the resource allocated to a thread, in which asynchronous
cancellation might not be able to free up resource immediately

S
b5

Operating System Concepts ~ 9t Edition Silberschatz, Galvin and Gagne ©2013

Operating System Concepts - 9" Edition

B Thread-local storage (TLS) allows each thread to have its own copy of data

W Useful when you do not have control over the thread creation process

m Different from local variables

® Local variables visible only during single function invocation
® TLS visible across function invocations

B Similar to static data

® TLSis unique to each thread

Silberschatz, Galvin and Gagne ©2013

e ™
: [y H
Operating System Examples e Windows Threads
B Windows XP Threads B Windows implements the Windows API — for Win 98, NT, 2000, Win XP, and Window 7
) B Implements the one-to-one mapping, kernel-level
B Linux Thread
B Each thread contains
® Athread ID uniquely identifying the thread
® Register set representing the status of the processor
® Separate user and kernel stacks for when thread runs in user mode or kernel mode
® Private data storage area used by run-time libraries and dynamic link libraries (DLLs)
B The register set, stacks, and private storage area are known as the context of the thread
B The primary data structures of a thread include:

Operating System Concepts - 9% Edition Silberschatz, Galvin and Gagne €2013

Operating System Concepts - 9* Edition

® ETHREAD (executive thread block) — includes pointer to process to which thread belongs and to
KTHREAD, in kernel space

® KTHREAD (kernel thread block) —
to TEB, in kernel space

e TEB (thread environment block) — thread ID, user-mode stack, thread-local storage, in user space /[«““v\

and info, k I

de stack, pointer

430 Silberschatz, Galvin and Gagne ©2013

=

ot '_Jas
*"jf,',’ Windows XP Threads Data Structures

(S H
e Linux Threads
ETHREAD
e B Linux refers to processes and threads as tasks rather than threads
address
pointer to ! !
parent process KTHREAD W Thread creation is done through clone () system call
and B clone() allows a child task to determine how to share the address space of the
n information parent task (process)
. ® Flags control behavior
kernel TEB
stack
thread identifier flag meaning
. user CLONE_FS File-system ir is shared.
: stack CLONE_VM The same memory space is shared.
thread-local CLONE_SIGHAND Signal handlers are shared.
EETEp CLONE_FILES The set of open files is shared.
kemel space user space AN AR
Operating System Concepts — 9™ Edition 431 Silberschatz, Galvin and Gagne €201 Operating System Concepts — 9" Edition 432

Silberschatz, Galvin and Gagne ©2013

