
Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 4:  Multithreaded 
Programming 

4.2! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 4: Multithreaded Programming 

■  Overview"
■  Multicore Programming"
■  Multithreading Models"
■  Threading Issues"
■  Operating System Examples"
"

4.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives 
■  To introduce the notion of a thread—a fundamental unit of CPU utilization that forms the basis

 of multithreaded computer systems"
"
■  To examine issues related to multithreaded programming"
"

4.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Motivation 
■  Most modern applications or/and programs are multithreaded"
■  Threads run within an application or a process"
■  Multiple tasks with the application can be implemented by separate threads"

●  Update display"
●  Fetch data"
●  Spell checking"
●  Answer a network request"

■  Process creation is heavy-weight while thread creation is light-weight"
■  Can simplify code, increase efficiency"
■  Kernels are generally multithreaded"



4.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multithreaded Server Architecture 

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

■  A single application may be required to perform several similar tasks. For example a busy web
 server may process thousands of web requests concurrently. Creating one process for each client
 request is cumbersome (resource-intensive) and time-consuming "

"
■  A single application may need to do multiple tasks. For example, a web browser (client) need to

 display images or text (one thread) while another thread retrieves data from the network"
"

4.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Benefits 

■  Responsiveness – may allow continued execution if part of process is blocked, especially important
 for user interfaces 
"

■  Resource Sharing – threads with a process share resources of the process by default, easier than
 shared memory or message passing that must be explicitly arranged by the programmer 
"

■  Economy – thread  creation is much cheaper than process creation, thread switching also has much
 lower overhead than context switching (switching to a different process) 
"

■  Scalability – A process can take advantage of multiprocessor architectures by running multiple
 threads of the process simultaneously on different processors (CPUs). 
"

4.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multicore Programming 
■  Multicore or multiprocessor systems putting pressure on programmers to make better use of

 the multiple computing cores. Programming challenges in multicore systems include:"
!
● Identifying tasks: to divide applications into separate, concurrent tasks"
● Balance: tasks perform equal work of equal value"
● Data splitting!
● Data dependency!
● Testing and debugging!

■  Parallelism implies a system can perform more than one task simultaneously"
■  Concurrency supports more than one task making progress"

● Single processor / core, scheduler providing concurrency"

■  Types of parallelism "
● Data parallelism – distributes subsets of the same data across multiple cores, same operation on each!
● Task parallelism – distributing threads across cores, each thread performing unique operation"
"
"
"

4.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Concurrency vs. Parallelism 
■  Concurrent execution on single-core system:!

■  Parallelism on a multi-core system:!

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…



4.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Amdahl’s Law 
■  Identifies performance gains from adding additional cores to an application that has both serial and

 parallel components"
■  S is serial portion"
■  N processing cores"

■  If application is 75% parallel / 25% serial, moving from 1 to 2 cores results in speedup of 1.6 times"
■  As N approaches infinity, speedup approaches 1 / S!
 

Serial portion of an application has disproportionate  effect on performance gained by
 adding additional cores!

!

4.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Single and Multithreaded Processes 

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

4.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread State 

■  Each Thread has a Thread Control Block (TCB)"
●  Execution State: CPU registers, program counter, pointer to stack"
●  Scheduling info: State (more later), priority, CPU time"
●  Accounting Info: "
●  Various Pointers (for implementing scheduling queues)"
●  Pointer to enclosing process: PCB"

■  In Nachos: “thread” is a class that includes the TCB"
■  OS keeps track of TCBs in protected memory"

●  Array, or Linked List, or …"

4.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread State (Cont.) 

■  State shared by all threads in process/address space"
●  Contents of memory (global variables, heap)"
●  I/O state (file system, network connections, etc.)"
"

■  State “private” to each thread "
●  Kept in TCB  Thread Control Block"
●  CPU registers (including, program counter)"
●  Execution stack – what is this?"
"

■  Execution Stack"
●  Parameters, temporary variables"
●  Keep program counters while called procedures are executing"



4.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Lifecycle of a Thread 

■  As a thread executes, it changes state:"
●  new:  The thread is being created"
●  ready:  The thread is waiting to run"
●  running:  Instructions are being executed"
●  waiting:  Thread waiting for some event to occur"
●  terminated:  The thread has finished execution"

■  “Active” threads are represented by their TCBs"
●  TCBs organized into queues based on their states"

4.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Ready Queue And Various I/O Device Queues 
■  Thread not running  TCB is in some scheduler queue"

●  Separate queue for each device/signal/condition "
●  Each queue can have a different scheduler policy"

"
"

Other"
State"
TCB9"

Link"
Registers"

"
"

Other"
State"
TCB6"

Link"
Registers"

"
"

Other"
State"
TCB16"

Link"
Registers"

"
"

Other"
State"
TCB8"

Link"
Registers"

"
"

Other"
State"
TCB2"

Link"
Registers"

"
"

Other"
State"
TCB3"

Link"
Registers"

Head"
Tail"

Head"
Tail"

Head"
Tail"

Head"
Tail"

Head"
Tail"

Ready"
Queue"

Tape"
Unit 0"

Disk"
Unit 0"

Disk"
Unit 2"

Ether"
Netwk 0"

4.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

      Examples of Multithreaded Programs 
■  Embedded systems "

●  Elevators, Planes, Medical systems, Wristwatches"
●  Single Program, concurrent operations"

■  Most modern OS kernels"
●  Internally concurrent to deal with concurrent requests by multiple users"
●  But no protection needed within kernel"

■  Database Servers"
●  Access to shared data by many concurrent users"
●  Also background utility processing must be done"

■  Network Servers"
●  Concurrent requests from network"
●  Again, single program, multiple concurrent operations"
●  File server, Web server, and airline reservation systems"

■  Parallel Programming (More than one physical CPU)"
●  Split program into multiple threads for parallelism"

"

4.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

User Threads and Kernel Threads 
■  Support for threads may be provided at either the user level, for user threads, or by the

 kernel, for kernel threads!
■  User threads - management done by user-level threads library without kernel support"
■  Three primary thread libraries:"

●   POSIX Pthreads!
●   Win32 threads"
●   Java thread"
"

■  Kernel threads - supported by the kernel. Virtually all general-purpose operating
 systems support kernel threads, including:"
●  Windows "
●  Solaris"
●  Linux"
●  Mac OS X"
"

■  Ultimately, a relationship must exist between user threads and kernel threads."



4.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multithreading Models 

■  Many-to-One  
"

■  One-to-One  
"

■  Many-to-Many"

4.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Many-to-One 

■  Many user-level threads mapped to single kernel thread"
■  One thread blocking causes all to block"
■  Multiple threads may not run in parallel on a multicore

 system because only one may be in kernel at a time"

■  Few systems currently use this model"

■  Examples:"
●  Solaris Green Threads!
●  GNU Portable Threads!

user thread

kernel threadk

4.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

One-to-One 
■  Each user-level thread maps to kernel thread"
■  Creating a user-level thread creates a kernel thread"
■  More concurrency than many-to-one"
■  Number of threads per process sometimes restricted due to overhead"

■  Examples"
●  Windows NT/XP/2000"
●  Linux"
●  Solaris 9 and later"

user thread

kernel threadkkkk

4.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Many-to-Many Model 

■  Allows many user level threads to be mapped to
 many kernel threads"

■  Allows the  operating system to create a sufficient
 number of kernel threads"

■  Solaris prior to version 9"

■  Windows NT/2000 with the ThreadFiber package"

user thread

kernel threadkkk



4.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Two-level Model 

■  Similar to M:N, except that it also allows a user thread to be bound to kernel thread"

■  Examples"
●  IRIX"
●  HP-UX"
●  Tru64 UNIX"
●  Solaris 8 and earlier"

user thread

kernel threadkkk k

4.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread Libraries 
■  Thread library provides programmer with API for creating and managing threads"

■  Two primary ways of implementing"
●  Library entirely in user space with no kernel support. This means that invoking a function

 in the library results in a local function call in user space, and not a system call"
●  Kernel-level library supported directly by the OS"
"

■  Three main thread libraries are in use today:"
●  POSIX Pthreads"
●  Windows"
●  Java"

4.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Threading Issues 

■  Semantics of fork() and exec() system calls"
"
■  Signal handling"

●  Synchronous and asynchronous"
"
■  Thread cancellation of target thread"

●  Asynchronous or deferred"

■  Thread-local storage"

"
"

4.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semantics of fork() and exec() 

■  Does fork()duplicate only the calling thread or all threads?"
"

●  Some UNIX have two versions of fork"
●  If exec() is called immediately after forking, duplicating all threads is unnecessary, as the

 program specified in the parameters to exec() will replace the entire process"

■  Exec() usually works as normal – replace the running process including all threads"



4.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Signal in UNIX 
■  Signals are in UNIX systems to notify a process that a particular event has occurred"
"
■  A signal may be received either synchronously or asynchronously, depending on the

 source of and the reason for the event being signalled. All signals follow the same
 pattern:"
●  Signal is generated by the occurrence of a particular event"
●  Signal is delivered to a process"
●  Once delivered, the signal must be handled"
"

■  Examples of synchronous signal include illegal memory access and division of 0.
 Synchronous signals are delivered to the same process that performed the operation
 that caused the signal"

"
■  When a signal is generated by an event external to a running process, that process

 receives the signal asynchronously. Examples include terminating a process with
 specific keystrokes (such as <control><C>)	  and having a timer expire"

"

4.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Signal Handling 
■  A signal may be handled by one of the two possible handlers: has occurred"

●  A default signal hander!
●  A user-defined signal handler"
"

■  Every signal has default handler that kernel runs when handling signal"
●  User-defined signal handler can override the default handler "
●  For single-threaded, signal delivered to process"

■  Where should a signal be delivered a multi-threaded program? "
●  Deliver the signal to the thread to which the signal applies"
●  Deliver the signal to every thread in the process"
●  Deliver the signal to certain threads in the process"
●  Assign a specific thread to receive all signals for the process"
"

■  The method for delivering a signal depends on the type of signal"
●  Synchronous signals need to be delivered to the thread causing the signal, not other threads"
●  Terminating a process signal should be sent to all threads within the process"

4.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread Cancellation 

■  Thread cancellation involves terminating a thread before it has completed. Example,"
●  Multiple threads are concurrently searching through a database, one thread returns

 the result, the remaining threads might be cancelled"
"

■  Thread to be canceled is target thread"
■  Cancellation of a target thread may occur in two different scenarios:"

!
●  Asynchronous cancellation terminates the target thread immediately"
●  Deferred cancellation allows the target thread to periodically check if it should be cancelled"
●  This involves in reclaiming the resource allocated to a thread, in which asynchronous

 cancellation might not be able to free up resource immediately"

4.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread-Local Storage 

■  Thread-local storage (TLS) allows each thread to have its own copy of data"

■  Useful when you do not have control over the thread creation process"

■  Different from local variables"
●  Local variables visible only during single function invocation"
●  TLS visible across function invocations"

■  Similar to static data"
●  TLS is unique to each thread"



4.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Examples 

■  Windows XP Threads"

■  Linux Thread"

4.30! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Windows Threads 
■  Windows implements the Windows API – for Win 98, NT, 2000, Win XP, and Window 7"

■  Implements the one-to-one mapping, kernel-level"

■  Each thread contains"
●  A thread ID uniquely identifying the thread"
●  Register set representing the status of the processor"
●  Separate user and kernel stacks for when thread runs in user mode or kernel mode"
●  Private data storage area used by run-time libraries and dynamic link libraries (DLLs)"

■  The register set, stacks, and private storage area are known as the context of the thread"

■  The primary data structures of a thread include:"
●  ETHREAD (executive thread block) – includes pointer to process to which thread belongs and to

 KTHREAD, in kernel space"
●  KTHREAD (kernel thread block) – scheduling and synchronization info, kernel-mode stack, pointer

 to TEB, in kernel space"
●  TEB (thread environment block) – thread ID, user-mode stack, thread-local storage, in user space"

"

4.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Windows XP Threads Data Structures 

user spacekernel space

pointer to  
parent process

thread start 
 address

ETHREAD

KTHREAD

• 
• 
•

kernel 
stack

scheduling 
and 

synchronization
information

• 
• 
•

user 
stack

thread-local 
storage

thread identifier

TEB

• 
• 
•

4.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Linux Threads 

■  Linux refers to processes and threads as tasks rather than threads!
"
■  Thread creation is done through clone() system call"
"
■  clone() allows a child task to determine how to share the address space of the

 parent task (process)"
●  Flags control behavior"

flag meaning

CLONE_FS

CLONE_VM

CLONE_SIGHAND

CLONE_FILES

File-system information is shared.

The same memory space is shared.

Signal handlers are shared.

The set of open files is shared.


