Chapter 4: Multithreaded

Programming

Operating System Concepts - 9" Edition

"”’F} bhapter 4: Multithreaded Programming

Silberschatz, Galvin and Gagne ©2013

Overview

Multicore Programming
Multithreading Models
Threading Issues

Operating System Examples

Operating System Concepts — 9" Edition

7

A
4.2 Silberschatz, Galvin and Gagne ©2013

Motivation

Most modern applications or/and programs are multithreaded

Threads run within an application or a process
Multiple tasks with the application can be implemented by separate threads

® Update display

® Fetch data

® Spell checking

® Answer a network request

Process creation is heavy-weight while thread creation is light-weight
Can simplify code, increase efficiency

(S Obiecti &r/*"';J
el jectives @
B To introduce the notion of a thread—a fundamental unit of CPU utilization that forms the basis u
of multithreaded computer systems =
|
W To examine issues related to multithreaded programming
]
|
|

Operating System Concepts — 9" Edition

Ve

43 Silberschatz, Galvin and Gagne ©2013

Kernels are generally multithreaded

=
GRS
Ve
Operating System Concepts — 9t Edition 4.4 Silberschatz, Galvin and Gagne ©2013

Multithreaded Server Architecture

(2) create new
(1) request thread to service

[_otent_| e | ens |

(3) resume listening
for additional
client requests

B A single application may be required to perform several similar tasks. For example a busy web
server may process thousands of web requests concurrently. Creating one process for each client
request is cumbersome (resource-intensive) and time-consuming

B Asingle application may need to do multiple tasks. For example, a web browser (client) need to
display images or text (one thread) while another thread retrieves data from the network

Operating System Concepts — 9th Edition 45 Silberschatz, Galvin and Gagne ©2013

Multicore Programming

B Multicore or multiprocessor systems putting pressure on programmers to make better use of
the multiple computing cores. Programming challenges in multicore systems include:

eldentifying tasks: to divide applications into separate, concurrent tasks
eBalance: tasks perform equal work of equal value

eData splitting

eData dependency

eTesting and debugging

W Parallelism implies a system can perform more than one task simultaneously

B Concurrency supports more than one task making progress
eSingle processor / core, scheduler providing concurrency

W Types of parallelism
eData parallelism — distributes subsets of the same data across multiple cores, same operation on each
eTask parallelism — distributing threads across cores, each thread performing unique operation

Operating System Concepts — 9th Edition 47 Silberschatz, Galvin and Gagne ©2013

|
.

xy,fﬁ,i,.‘g Benefits

B Responsiveness — may allow continued execution if part of process is blocked, especially important
for user interfaces

B Resource Sharing — threads with a process share resources of the process by default, easier than
shared memory or message passing that must be explicitly arranged by the programmer

B Economy —thread creation is much cheaper than process creation, thread switching also has much
lower overhead than context switching (switching to a different process)

B Scalability — A process can take advantage of multiprocessor architectures by running multiple
threads of the process simultaneously on different processors (CPUs).

Operating System Concepts — 9t Edition 4.6 Silberschatz, Galvin and Gagne ©2013

Concurrency vs. Parallelism

B Concurrent execution on single-core system:

single core T4 To T3 T4 T4 To T3 Ty T4

time

B Parallelism on a multi-core system:

core 1 Ty T3 T+ T3 T4 e

core 2 To Ty To Ty To .

time

Operating System Concepts — 9t Edition 4.8 Silberschatz, Galvin and Gagne ©2013

~ Amdahl’s Law

B Identifies performance gains from adding additional cores to an application that has both serial and
parallel components

W Sis serial portion
B N processing cores

speedup <
p P S

1
a1
=

B [f application is 75% parallel / 25% serial, moving from 1 to 2 cores results in speedup of 1.6 times
B As Napproaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on performance gained by
adding additional cores

E7G

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 4.9
=
"r‘:g;‘ﬁ
2 Thread State

B Each Thread has a Thread Control Block (TCB)
® Execution State: CPU registers, program counter, pointer to stack
® Scheduling info: State (more later), priority, CPU time
® Accounting Info:
@ Various Pointers (for implementing scheduling queues)
@ Pointer to enclosing process: PCB
B In Nachos: “thread” is a class that includes the TCB
B OS keeps track of TCBs in protected memory
® Array, or Linked List, or ...

3

Operating System Concepts — 9th Edition 411 Silberschatz, Galvin and Gagne ©201

=

-
“$%7 Single and Multithreaded Processes

code		data		files		code		data		files
stack		registers		registers		registers				
stack		stack		stack						

thread ——> g <«— thread

multithreaded process /,{:;’z\

R
Silberschatz, Galvin and Gagne ©2013

single-threaded process

Operating System Concepts — 9" Edition 4.10

o
557 Thread State (Cont.)

B State shared by all threads in process/address space
@ Contents of memory (global variables, heap)
@ |/O state (file system, network connections, etc.)

W State “private” to each thread
@ Keptin TCB [¥] Thread Control Block
® CPU registers (including, program counter)
@ Execution stack — what is this?

B Execution Stack
® Parameters, temporary variables
® Keep program counters while called procedures are executing

Operating System Concepts — 9t Edition 4.12 Silberschatz, Galvin and Gagne ©2013

Lifecycle of a Thread

[— . . e
new 3dm|tled interrupt exit \termlnated ’/\
— P /
ready K running
2 o

— - y
1/0 or event completion \scheduler dispatch 1/0 or event wait

waiting

o

B As athread executes, it changes state:
® new: The thread is being created
o ready: The thread is waiting to run
® running: Instructions are being executed
® waiting: Thread waiting for some event to occur
o terminated: The thread has finished execution

W “Active” threads are represented by their TCBs
® TCBs organized into queues based on their states

Operating System Concepts — 9th Edition 4.13 Silberschatz, Galvin and Gagne ©2013

=

».—”-“""J
“»”7 Examples of Multithreaded Programs

B Embedded systems
@ Elevators, Planes, Medical systems, Wristwatches
@ Single Program, concurrent operations
B Most modern OS kernels
@ Internally concurrent to deal with concurrent requests by multiple users
® But no protection needed within kernel
B Database Servers
® Access to shared data by many concurrent users
® Also background utility processing must be done
B Network Servers
® Concurrent requests from network
@ Again, single program, multiple concurrent operations
@ File server, Web server, and airline reservation systems
W Parallel Programming (More than one physical CPU)
@ Split program into multiple threads for parallelism

Operating System Concepts — 9th Edition 4.15 Silberschatz, Galvin and Gagne ©2013

Ready Queue And Various I/O Device Queues

B Thread not running [¥] TCB is in some scheduler queue
® Separate queue for each device/signal/condition
® Each queue can have a different scheduler policy

Ready Head Link [Link Link
Queue Tail Registers Registers Registers =
Other Other Other
Tape Head [I State State State
Unit0 e TCB, TCB, TCByg
U[::?{ko Head Link Link
: Tail Registers Registers| ~
Other Other
Disk Head L State State
Unit 2 z - TCB, TCB,
Tail T
Ether Head /_' Link —
Netwk 0 : / Registers =
Tail Other
State
TCB, -
Operating System Concepts — 9t Edition 4.14 Silberschatz, Galvin and Gagne ©20{3.-
o

:l C User Threads and Kernel Threads

B Support for threads may be provided at either the user level, for user threads, or by the

kernel, for kernel threads

B User threads - management done by user-level threads library without kernel support

B Three primary thread libraries:
® POSIX Pthreads
® Win32 threads
® Javathread

B Kernel threads - supported by the kernel. Virtually all general-purpose operating

systems support kernel threads, including:
® Windows

® Solaris

® Linux

® Mac OS X

B Ultimately, a relationship must exist between user threads and kernel threads.

Operating System Concepts — 9" Edition 4.16

Silberschatz, Galvin and Gagne ©2013

»;“} Multithreading Models

B Many-to-One
B One-to-One

B Many-to-Many

Operating System Concepts — 9th Edition 4.17 Silberschatz, Galvin and Gagne ©2013

=

<5
. One-to-One

Each user-level thread maps to kernel thread

Creating a user-level thread creates a kernel thread

More concurrency than many-to-one

Number of threads per process sometimes restricted due to overhead

Examples
® Windows NT/XP/2000
® Linux
® Solaris 9 and later

<«—— user thread

&) &) &) <«— kernel thread
43

(4}“

S 5)

o o

Operating System Concepts — 9th Edition 4.19 Silberschatz, Galvin and Gagne ©201

Many-to-One

e

B Many user-level threads mapped to single kernel thread
B One thread blocking causes all to block

B Multiple threads may not run in parallel on a multicore

system because only one may be in kernel at a time
<«— user thread

B Few systems currently use this model

B Examples:
® Solaris Green Threads
® GNU Portable Threads

<«— kernel thread

D

Operating System Concepts — 9t Edition 4.18 Silberschatz, Galvin and Gagne ©2013

=

S e Many-to-Many Model

B Allows many user level threads to be mapped to
many kernel threads

B Allows the operating system to create a sufficient
number of kernel threads 3

3«— user thread
W Solaris prior to version 9

B Windows NT/2000 with the ThreadFiber package

<—kernel thread

>

Silberschatz, Galvin and Gagne ©201

©

Operating System Concepts — 9" Edition 4.20

¥
A

— - . .
> Two-level Model > Thread Libraries

B Thread library provides programmer with API for creating and managing threads
W Similar to M:N, except that it also allows a user thread to be bound to kernel thread

B Two primary ways of implementin,
B Examples P y way P 9

° IRIX @ Library entirely in user space with no kernel support. This means that invoking a function
HP-UX in the library results in a local function call in user space, and not a system call

° X

o Trusa UNIX ; ; é «— user thread ® Kernel-level library supported directly by the OS

® Solaris 8 and earlier

B Three main thread libraries are in use today:
® POSIX Pthreads
® Windows
e Java

@ <«— kernel thread

!

A

<
Pl A A%
Operating System Concepts — 9" Edition 4.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts — 9" Edition 4.22 Silberschatz, Galvin and Gagne ©2013

A

Threading Issues wd Semantics of fork() and exec()

B Semantics of fork() and exec() system calls W Does fork () duplicate only the calling thread or all threads?
B Signal handling ® Some UNIX have two versions of fork
® Synchronous and asynchronous ® |If exec() is called immediately after forking, duplicating all threads is unnecessary, as the

program specified in the parameters to exec() will replace the entire process

B Thread cancellation of target thread

H Exec usually works as normal — replace the running process including all threads
® Asynchronous or deferred xec () Yy p g p g

B Thread-local storage

A

)

.

25\

Operating System Concepts — 9 Edition 423 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts — 9™ Edition 4.24 Silberschatz, Galvin and Gagne ©2013

Signal in UNIX

B Signals are in UNIX systems to notify a process that a particular event has occurred

B A signal may be received either synchronously or asynchronously, depending on the
source of and the reason for the event being signalled. All signals follow the same
pattern:
® Signal is generated by the occurrence of a particular event
® Signalis delivered to a process
® Once delivered, the signal must be handled

B Examples of synchronous signal include illegal memory access and division of 0.
Synchronous signals are delivered to the same process that performed the operation
that caused the signal

B When a signal is generated by an event external to a running process, that process
receives the signal asynchronously. Examples include terminating a process with
specific keystrokes (such as <control><C>) and having a timer expire

Silberschatz, Galvin and Gagne ©2013

4_,_\4"\.\% i
o Thread Cancellation

B Thread cancellation involves terminating a thread before it has completed. Example,

® Multiple threads are concurrently searching through a database, one thread returns
the result, the remaining threads might be cancelled

B Thread to be canceled is target thread
B Cancellation of a target thread may occur in two different scenarios:

® Asynchronous cancellation terminates the target thread immediately
® Deferred cancellation allows the target thread to periodically check if it should be cancelled

® This involves in reclaiming the resource allocated to a thread, in which asynchronous
cancellation might not be able to free up resource immediately

Operating System Concepts — 9th Edition 4.27 Silberschatz, Galvin and Gagne ©2013

Signal Handling

B A signal may be handled by one of the two possible handlers: has occurred
® A default signal hander
® A user-defined signal handler

B Every signal has default handler that kernel runs when handling signal
® User-defined signal handler can override the default handler
® For single-threaded, signal delivered to process

B Where should a signal be delivered a multi-threaded program?
® Deliver the signal to the thread to which the signal applies
® Deliver the signal to every thread in the process
® Deliver the signal to certain threads in the process
® Assign a specific thread to receive all signals for the process

B The method for delivering a signal depends on the type of signal
® Synchronous signals need to be delivered to the thread causing the signal, not other threads
® Terminating a process signal should be sent to all threads within the process

Py
Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 4.26

Thread-Local Storage

B Thread-local storage (TLS) allows each thread to have its own copy of data
B Useful when you do not have control over the thread creation process

W Different from local variables
® Local variables visible only during single function invocation
® TLS visible across function invocations

B Similar to static data
® TLS s unique to each thread

Operating System Concepts — 9t Edition 4.28 Silberschatz, Galvin and Gagne ©2013

‘W':} Operating System Examples Windows Threads

B Windows XP Threads B Windows implements the Windows API —for Win 98, NT, 2000, Win XP, and Window 7

i B Implements the one-to-one mapping, kernel-level
B Linux Thread

W Each thread contains
® Athread ID uniquely identifying the thread
® Register set representing the status of the processor
® Separate user and kernel stacks for when thread runs in user mode or kernel mode
® Private data storage area used by run-time libraries and dynamic link libraries (DLLs)

W The register set, stacks, and private storage area are known as the context of the thread

B The primary data structures of a thread include:

® ETHREAD (executive thread block) — includes pointer to process to which thread belongs and to
KTHREAD, in kernel space

® KTHREAD (kernel thread block) — scheduling and synchronization info, kernel-mode stack, pointer
to TEB, in kernel space

® TEB (thread environment block) — thread ID, user-mode stack, thread-local storage, in user space

WS
A B 3
Operating System Concepts — 9" Edition 4.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts — 9" Edition 4.30 Silberschatz, Galvin and Gagne ©2013
=
.
"F\/\(l: "/ H H
»77 Windows XP Threads Data Structures Linux Threads
ETHREAD
thread start B Linux refers to processes and threads as tasks rather than threads
address
pointer to . .
oo KTHREAD B Thread creation is done through clone () system call
scheduling . i
hand B clone() allows a child task to determine how to share the address space of the
synchronization
N information parent task (process)
. ® Flags control behavior
kernel TEB
stack
thread identifier flag meaning
. user CLONE_FS File-system information is shared.
. stack CLONE_VM The same memory space is shared.
.
thread-local CLONE_SIGHAND Signal handlers are shared.
storage CLONE_FILES The set of open files is shared.
B
kernel space user space

Operating System Concepts — 9th Edition 431 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts — 9t Edition 4.32 Silberschatz, Galvin and Gagne ©2013

