Chapter 3: Process Concept

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013

o Chapter 3: Process Concept

Process Concept

Process Scheduling

Operations on Processes
Inter-Process Communication (IPC)

Communication in Client-Server Systems

4 X)
Operating System Concepts — 9" Edition 3.2 Silberschatz, Galvin and Gagne ©2013

Objectives

B To introduce the notion of a process -- a program in execution, which forms the
basis of all computations

B To describe the various operations and features of processes, including scheduling,
creation and termination, and communication

B To explore interprocess communication using shared memory and message passing

B To describe communication in client-server systems

Operating System Concepts — 9" Edition 3.3 Silberschatz, Galvin and Gagne ©2013

3

,a‘m».s

G Process Concept

)\&5 ‘\&;‘:.

B An operating system executes a variety of programs:
® A batch system executes jobs and a time-shared systems has user programs or tasks

Textbook uses the terms job and process almost interchangeably
Process — a program in execution; process execution must progress in sequential fashion

M A process include:

The program code, also called text section

Current activity, represented by the program counter, processor registers

Stack containing temporary data (such as function parameters, return addresses, local variables)

Data section containing global variables
® Heap containing memory dynamically allocated during run time

B Program is a passive entity such as a file containing a list of instructions stored on disk
(executable file),

B A process is an active entity, with a program counter specifying the next instruction to execute
and a set of associated resources.

B A program becomes a process when an executable file is loaded into memory
® Execution of program started via (1) GUI mouse clicks, (2) command line entry of its name

B One program can be used by several processes
® Consider multiple users executing the same program

Operating System Concepts — 9" Edition 3.4 Silberschatz, Galvin and Gagne ©2013

Process in Memory

Temporary data (function parameters,
max / return addresses, and local variables)

stack

T Memory dynamically allocated during
process run time
heap
e //ﬂ Global variables
text Program code
//—‘ 9

Operating System Concepts — 9" Edition 3.5 Silberschatz, Galvin and Gagne ©2013

Process States and Diagram

B As a process executes, it changes state, which is defined by the current activity

e New: The process is being created
e Running: Instructions are being executed

e Waiting: The process is waiting for some event to occur (such as I1/0O completion)

e Ready: The process is waiting to be assigned to a processor (CPU)
e Terminated: The process has finished execution

exit

o admitted interrupt

Only one process
at any instant

scheduler dispatch

Could have multiple
processes

I/O or event wait

I/O or event completiQn

Operating System Concepts — 9t" Edition

Silberschatz, Galvin and Gagne ©2013

G Process Control Block (PCB)

B Each process is represented by a process control
block in the operating system (also called task
control block)

Process state — running, waiting, ready, halted, and so on
Program counter — location of instruction to next execute
CPU registers — contents of all process-centric registers

CPU scheduling information - priorities, scheduling
gueue pointers

Memory-management information — memory allocated to
the process

B Accounting information — CPU used, clock time elapsed
since start, time limits

B |/O status information — I/O devices allocated to process,
list of open files

Operating System Concepts — 9t" Edition 3.7

process state

process number

program counter

registers

memory limits

list of open files

<

. e N s
/’/ W\
X\
0w

A0 PN

Silberschatz, Galvin and Gagne ©2013

™
»»7 CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing / l

& save state into PCB,

> idle

reload state from PCB, y

/

- idle interrupt or system call executing

! T

save state into PCB;

. > idle

) reload state from PCB, y

executing \

4 X)
Operating System Concepts — 9" Edition 3.8 Silberschatz, Galvin and Gagne ©2013

Threads

B So far, process has a single thread of execution
® This single thread of control allows a process to perform only one task at a time.

® If thisis the case, a word-processor program cannot simultaneously type in characters
and run the spell checker at the same time.

® Most modern OS allows a process to have multiple threads of execution, thus to perform
more than one task at a time.

® This can best take advantage of the multicore systems, where multiple threads of one
process can run in parallel.

B PCB has to be expanded to include information for each thread
® Multiple locations can execute at once
® Multiple program counters, one for each thread

B Chapter 4 discusses the details on Thread

Operating System Concepts — 9" Edition 3.9 Silberschatz, Galvin and Gagne ©2013

Process Representation in Linux

B Represented by the C structure task struct
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process’ s parent */
struct list head children; /* this process s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this process */

sirucCt tasx_struct siruct task_struct struct task_siruct
process information process information e o o process informason
- - -
- - -
- - -
current

(cumrently execuling proccess)

Operating System Concepts — 9" Edition 3.10 Silberschatz, Galvin and Gagne ©2013

Process =? Program

main () { main () { Heap
} }
A() { A() { Stack
A.
} }
Program Process

B A process is more than just a program:
® A program is just part of the process state
B A process is “less” than a program:
® A program can be invoked or called by more than one process

B A program is static (line of codes stored) and a process has a “life” and is always in
some “state”

3 _
.,.}“\(‘
“(:a/ ﬁ :“Ji A

Operating System Concepts — 9" Edition 3.11 Silberschatz, Galvin and Gagne ©2013

Process Scheduling

B Maximize CPU use, quickly switch processes onto CPU for time sharing

B Process scheduler selects among available processes for next execution on CPU
B Maintains scheduling queues of processes

® Job gueue — set of all processes in the system

® Ready queue — set of all processes residing in main memory, ready and waiting
to execute

® Device queues — set of processes waiting for an 1/0 device
® Processes migrate among the various queues

A N’*

Operating System Concepts — 9" Edition 3.12 Silberschatz, Galvin and Gagne ©2013

Ready Queue And Various
/0 Device Queues

queue header PCB, PCB,
ready head > =
queue tail N registers registers
mag head -ﬁ\ /
tape . B
unit O tail - =
;“39 head +——=
ape
uni'?1 il] X PCB; PCB,, PCBg
—_— —
disk head 7
unit 0 el .\
PCB;
terminal head T—> 5 =
unit O tail 11—
3.13

Operating System Concepts — 9" Edition

Silberschatz, Galvin and Gagne ©2013

N

| Representation of Process Scheduling

B Queuing diagram represents queues, resources, flows

_: ready queue -@) >

/O /O queue « |/O request —
time slice :
expired
child fork a
@' child
iInterrupt wait for an E
occurs Interrupt

Operating System Concepts — 9" Edition 3.14 Silberschatz, Galvin and Gagne ©2013

Schedulers

B Long-term scheduler (or job scheduler) — selects which processes should be brought

into the ready queue

B Short-term scheduler (or CPU scheduler) — selects which process should be executed

next and allocates CPU

B Short-term scheduler is invoked very frequently (milliseconds)

W

Long-term scheduler is invoked very infrequently (seconds, minutes) {¥

(must be fast)

B The long-term scheduler controls the degree of multiprogramming

B Processes can be described as either:

(may be slow)

® |/O-bound process — spends more time doing I/0 than computations, many short CPU

bursts

® CPU-bound process — spends more time doing computations; few very long CPU bursts

B Long-term scheduler strives for good process mix

Operating System Concepts — 9" Edition 3.15

Silberschatz, Galvin and Gagne ©2013

=

<%/ Addition of Medium Term Scheduling

B Medium-term scheduler can be added if degree of multiple programming needs to be decreased

® Remove a process from the memory, store on disk, bring back later in from disk to continue
execution: swapping

swap in partially executed swap out
swapped-out processes

ready queue -@L » end

/0 I/O waiting
queues

l"

Operating System Concepts — 9t" Edition 3.16 Silberschatz, Galvin and Gagne ©2013

3

> f,‘~“~‘5‘“”*-s

~$77 Multitasking in Mobile Systems

)\&5 ‘\&;‘:.

B Some systems / early systems allow only one process to run, others suspended

B Apple, beginning with i0OS4, provides a limited form of multitasking for user applications
® A single foreground application run concurrently with multiple background applications
® Single foreground process- currently on display and controlled via user interface
® Multiple background processes— remain in memory, running, but not on the display
O

Limited applications can run in background include single, finite-length task, receiving notification
of events, specific long-running tasks like audio playback

® Constrained by battery life and memory usage

B Android runs foreground and background, with fewer limits
® There is no constraint on the types of applications that can run in background

® Background process uses a service to perform tasks, in which the service is a separate
application component that runs on behalf of the background process

® Service can keep running even if background process is suspended
® Service has no user interface, small memory use, thus efficient

Operating System Concepts — 9" Edition 3.17 Silberschatz, Galvin and Gagne ©2013

Context Switch

B When CPU switches to another process, the system must save the state of the old process
and load the saved state for the new process via a context switch

B Context of a process represented in the PCB

B Context-switch time is overhead; the system does no useful work while switching
® The more complex the OS and the PCB -> longer the context switch
® Typical speed is a few milliseconds

B Context-switch times are highly dependent on hardware support

® Some hardware provides multiple sets of registers per CPU (such as the SUN UltraSPARC) ->
multiple contexts loaded at once

Operating System Concepts — 9" Edition 3.18 Silberschatz, Galvin and Gagne ©2013

Operations on Processes

B The processes in most systems can execute concurrently, and they may be created
and deleted dynamically.

B System must provide mechanisms for process creation, termination, and so on as
detailed next

Operating System Concepts — 9" Edition 3.19 Silberschatz, Galvin and Gagne ©2013

&/Wﬁ/ .
B Process Creation

B A Parent process create children processes, which, in turn create other processes, forming a
tree of processes

B Generally, process identified and managed via a process identifier (pid)

B Resource sharing options
® Parent and children share all resources
® Children share subset of parent’ s resources
® Parent and child share no resources

B Execution options
® Parent and children execute concurrently
® Parent waits until children terminate

Operating System Concepts — 9t" Edition 3.20 Silberschatz, Galvin and Gagne ©2013

A Tree of Processes in Linux

init
pid =1

kthreadd _ sshd
pid = 2 pid = 3028
sshd
bash L g
pid = 8416 pid = 3610
tcsch
ps _emacs pid = 4005
pid = 9298 pid = 9204

Operating System Concepts — 9" Edition 3.21 Silberschatz, Galvin and Gagne ©2013

”«mj m
o Process Creation (Cont.)

B Address space
® Child duplicate of parent
® Child has a program loaded into it

B UNIX examples
® fork () system call creates new process, which duplicates the address space of the parent
® exec() system call used after a fork () to replace the process’ memory space with a new program

parent resumes

walit >

child - exec()

SN

- el
/] \<
AU m A

Operating System Concepts — 9" Edition 3.22 Silberschatz, Galvin and Gagne ©2013

o)

“$% What does it take to Create a Process?

<

B Must construct new PCB

® Inexpensive

B Must set up new page tables for address space

® More expensive

B Copy data from parent process? (Unix fork())

® Semantics of Unix fork() are that the child process gets a complete copy of the parent
memory and |/O state

® Oiriginally very expensive

B Copy I/O state (file handles, etc)

® Medium expense

Operating System Concepts — 9t" Edition 3.23 Silberschatz, Galvin and Gagne ©2013

fork(): create a new process

Parent & Child:

® Duplicated m Different
Address space PID
Global & local Running time
variables Running state
Current working Return values from
directory fork()

Root directory
Process resources
Resource limits
etc...

& L
W L
; j
w =z \JJ 5
p-. .
o< A\
» "

Operating System Concepts — 9t" Edition 3.24 Silberschatz, Galvin and Gagne ©201

”,‘.m.&

= Return values of fork()

LT
>
{L\‘S

B The return value of the function is which discriminates the two processes of
execution.

B Upon successful completion, fork() return O to the child process and return the
process ID of the child process to the parent process.

B Otherwise, (pid_t)-1 is returned to the parent process, no child process is created,
and errno is set to indicate the error.

Operating System Concepts — 9t" Edition 3.25 Silberschatz, Galvin and Gagne ©2013

Return values of fork()

m Successful

/ -

® Not Successful

Operating System Concepts — 9t Edition 3.26

] C Program Forking Separate Process

int main()

{

pid_t p1id;

/* fork another process */

pid = fork();

1f (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);

s

else 1f (pid == @) { /* child process */
execlp("/bin/1s", "1s", NULL);

s

else { /* parent process */ N\

/* parent will wait for the child to
complete */

wait (NULL);
printf ("Child Complete");

_ ;xit(@); Y,
ks

Operating System Concepts — 9" Edition 3.27 Silberschatz, Galvin and Gagne ©2013

\

“»”’ Creating a Separate Process via Windows API

L\

#include <stdio.h>
#include <windows.h>

int main(VOID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&¥pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */

&si,
&pi))
{
fprintf(stderr, "Create Process Failed");
return -1;
}

/* parent will wait for the child to complete */
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess) ;
CloseHandle(pi.hThread) ;

Operating System Concepts — 9" Edition 3.28 Silberschatz, Galvin and Gagne ©2013

EF Fork() and CreateProcess()

{L \.‘3

B fork() has the child process inheriting the address space of its parent, while
CreateProcess() requires loading a specified program into the address space of the
child process at process creation

B fork() is passed no parameters, CreateProcess() expects no fewer than 10
parameters. In the example above, application mspaint.exe is loaded

Operating System Concepts — 9t" Edition 3.29 Silberschatz, Galvin and Gagne ©2013

¥

”,‘mﬂ_&

ar o Process Termination

3

B Process executes last statement and asks the operating system to delete it (exit ())
® Output data from child to parent (via wait())
® Process’ resources are deallocated by operating system

B Parent may terminate execution of children processes (abort ())
® Child has exceeded its usage of some of the resources that has been allocated
® Task assigned to child is no longer required
® If parent is exiting
» Some operating systems do not allow child to continue if its parent terminates
All children terminated - cascading termination

B A parent process may wait for the termination of a child process by using wait() system call,
returning the pid, so the parent process can tell which of its children has terminated.

pid t pid; int status;
pid = wait (&status) ;

B If no parent waiting, then terminated process is a zombie. Once the parent calls wait(), the
process identifier of the zombie process and its entry in the process table are released

B If parent terminated without calling wait(), the child processes are orphans. Linux and Unix -
assign the init process as the new process to orphan processes.

o

Operating System Concepts — 9t" Edition 3.30 Silberschatz, Galvin and Gagne ©2013

Interprocess Communication

B Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes, including sharing data
B Reasons for cooperating processes:

® Information sharing, for instance a shared file

® Computation speedup: subtasks of a task execute in parallel on multicore

® Modularity: system functions are divided into multiple processes or threads

® Convenience: users may work on multiple tasks in parallel

B Cooperating processes need an interprocess communication (IPC) mechanism that allow
them to exchange data and information

B Two models of IPC, both common in operating systems
® Shared memory
® Message passing

Operating System Concepts — 9" Edition 3.31 Silberschatz, Galvin and Gagne ©2013

g ‘W“’h-k

“#”/ Multiple Processes Collaboration

L\,

Proc 1 Proc 2 Proc 3

B Need communication mechanisms:
® Separate address spaces different processes
® Shared-Memory Mapping
» Accomplished by mapping addresses to shared-memory regions
» System calls such as read() and write() through memory
» This suffers from cache coherency issues in multicores (with multiple cache)
® Message Passing
» send() and receive() messages
» Can work across network
» Better performance in multicore systems.

Operating System Concepts — 9" Edition 3.32 Silberschatz, Galvin and Gagne ©2013

Communications Models

process A — process A

| orocess B —» shared memory |«

process B —
message queue
—> M| M4 Mo | Mgf ... [Mp|e—
kernel
kernel
(a) (b)

Operating System Concepts — 9" Edition 3.33 Silberschatz, Galvin and Gagne ©2013

Producer-Consumer Problem

B Paradigm for cooperating processes, producer process produces information
that is consumed by a consumer process

® unbounded-buffer places no practical limit on the size of the buffer
® bounded-buffer assumes that there is a fixed buffer size

Operating System Concepts — 9" Edition 3.34 Silberschatz, Galvin and Gagne ©2013

Bounded-Buffer — Shared-Memory Solution

B Shared data

fdefine BUFFER SIZE 10
typedef struct {

} 1tem;

1tem buffer[BUFFER_SIZE];
int 1in = 0;
int out = 0;

B Solution is correct, but can only use BUFFER_SIZE-1 elements

4)
Operating System Concepts — 9" Edition 3.35 Silberschatz, Galvin and Gagne ©2013

Bounded-Buffer — Producer

1tem next produced;
while (true) {
/* produce an item in next produced */
while (((1in + 1) % BUFFER SIZE) == out)
; /* do nothing */
buffer[in] = next produced;

in = (1n + 1) % BUFFER SIZE;

4)
Operating System Concepts — 9" Edition 3.36 Silberschatz, Galvin and Gagne ©2013

Bounded Buffer — Consumer

1tem next consumed;

while (true) {
while (1in == out)

; /* do nothing */

next consumed = buffer|[out];
out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

A A
Operating System Concepts — 9" Edition 3.37 Silberschatz, Galvin and Gagne ©2013

)]
Wl 3 o / = - -
2" Interprocess Communication — Message Passing

B Mechanism for processes to communicate and to synchronize their actions

B Message system — processes communicate with each other without resorting to shared
variables

B |PC facility provides atleast two operations:
® send(message) — message size fixed or variable
® receive(message)

B If Pand Q wish to communicate, they need to:
® establish a communication link between them
® exchange messages via send/receive

B Implementation of communication link
® physical (e.g., shared memory, hardware bus)
® logical (e.g., direct or indirect, synchronous or asynchronous, automatic or explicit buffering)

Operating System Concepts — 9" Edition 3.38 Silberschatz, Galvin and Gagne ©2013

Implementation Questions

B How are links established?

B Can alink be associated with more than two processes?

B How many links can there be between every pair of communicating processes?

B What is the capacity of a link?

B Is the size of a message that the link can accommodate fixed or variable?

B Is alink unidirectional or bi-directional?

Operating System Concepts — 9" Edition 3.39 Silberschatz, Galvin and Gagne ©2013

‘f"?/ Direct Communication

B Processes must name each other explicitly:
® send (P, message) — send a message to process P
® receive(Q, message) — receive a message from process Q

B Properties of communication link
® Alinkis established automatically
® Alink is associated with exactly one pair of communicating processes
® Between each pair there exists exactly one link
® The link may be unidirectional, but is usually bi-directional

Operating System Concepts — 9" Edition 3.40 Silberschatz, Galvin and Gagne ©2013

Indirect Communication

B Messages are directed and received from mailboxes (also referred to as ports)
® Each mailbox has a unique id

® Processes can communicate only if they share a mailbox

B Properties of communication link

A link is established only if processes share a common mailbox

A link may be associated with more than two processes

Each pair of processes may share several communication links, i.e., mailboxes
Link may be unidirectional or bi-directional

Operating System Concepts — 9" Edition 3.41 Silberschatz, Galvin and Gagne ©2013

Indirect Communication

M Operations
® create a new mailbox
® send and receive messages through mailbox
® destroy a mailbox

B Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

4 X)
Operating System Concepts — 9" Edition 3.42 Silberschatz, Galvin and Gagne ©2013

Indirect Communication

B Mailbox sharing
e P, P, and P;share mailbox A
® P, sends; P,and P;receive
® Who gets the message?

B Different methods can be chosen:
® Allow a link to be associated with at most two processes
® Allow at most one process at a time to execute a receive() operation

® Allow the system to select arbitrarily the receiver. The system may define an algorithm for selecting
which process will receive the message (for example, round-robin), Sender is notified who the
receiver was.

Operating System Concepts — 9" Edition 3.43 Silberschatz, Galvin and Gagne ©2013

Synchronization

B Message passing may be either blocking or non-blocking

B Blocking is considered synchronous

® Blocking send: The sending process is blocked until the message is received by the receiving
process or by the mailbox

® Blocking receive: The receiver blocks until a message is available

B Non-blocking is considered asynchronous
® Non-blocking send: The sending process sends the message and resumes its operation
® Non-blocking receive: The receiver retrieves a valid message or null

Operating System Concepts — 9" Edition 3.44 Silberschatz, Galvin and Gagne ©2013

Synchronization (Cont.)

B Different combinations possible
® If both send and receive are blocking, we have a rendezvous

B Producer-consumer becomes trivial

message next produced;

while (true) ({
/* produce an item in next produced */

send (next produced) ;

}

message next consumed;
while (true) {
recelve (next consumed) ;

/* consume the item 1n next consumed */

A m’*

Operating System Concepts — 9" Edition 3.45 Silberschatz, Galvin and Gagne ©2013

Buffering

B Queue of messages attached to the link (director indirect); implemented in one of three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

A
Silberschatz, Galvin and Gagne ©2013

S,
2

Operating System Concepts — 9" Edition 3.46

)

A
h T
3 g

»”7 Communications in Client-Server Systems
B Sockets
M Pipes

Operating System Concepts — 9" Edition 3.47 Silberschatz, Galvin and Gagne ©2013

Sockets

B A socket is defined as an endpoint for communication

B Concatenation of IP address and port — a number included at start of message packet to differentiate
network services on a host

B The socket 161.25.19.8:1625 refers to port 1625 on host IP address 161.25.19.8

B Communication consists between a pair of sockets

B All ports below 1024 are well known, used for standard services

B Special IP address 127.0.0.1 (loopback) to refer to system on which process is running

Operating System Concepts — 9" Edition 3.48 Silberschatz, Galvin and Gagne ©2013

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(1667 . 25.71©)35310))

A 3
Operating System Concepts — 9" Edition 3.49 Silberschatz, Galvin and Gagne ©2013

//‘%
/ mj
/ ~7
<
= ‘

o4 Pipes

{L \.‘3

B Acts as a conduit allowing two processes to communicate
B Pipes were one of the first IPC mechanisms in early UNIX systems

B Four Issues must be considered:
® s communication unidirectional or bidirectional?
® In the case of two-way communication, is it half or full-duplex?
® Must there exist a relationship (such as parent-child) between the communicating processes?
® Can the pipes be used over a network or must reside on the same machine?

Operating System Concepts — 9" Edition 3.50 Silberschatz, Galvin and Gagne ©2013

Ordinary Pipes

B Ordinary pipes allow communication in standard producer-consumer style- pipe(int fd[])

B Producer writes to one end (the write-end of the pipe) fd[1]

B Consumer reads from the other end (the read-end of the pipe) fd[0]

B Ordinary pipes are therefore unidirectional, UNIX treats a pipe as a special type of file.

B Require parent-child relationship between communicating processes on the same machine

B Ordinary pipe ceases to exist after the processes have finished communicating and terminated

parent
fd(0) fd(1)

child
fd(0) fd(1)

>

B Windows calls these anonymous pipes

(

pipe

(=

B See Unix and Windows code samples in textbook

Operating System Concepts — 9t" Edition

3.51

Silberschatz, Galvin and Gagne ©2013

B Named Pipes

B Named Pipes are more powerful than ordinary pipes

B Communication is bidirectional

B No parent-child relationship is necessary between the communicating processes
B Several processes can use the named pipe for communication

B Provided on both UNIX and Windows systems

B Name pipes continue to exist after communicating processes have finished.

A N’*

Operating System Concepts — 9" Edition 3.52 Silberschatz, Galvin and Gagne ©2013

End of Chapter 3

Operating System Concepts — 9t" Edition Silberschatz, Galvin and Gagne ©2013

