
Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 3: Process Concept

3.2! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 3: Process Concept

■  Process Concept"
■  Process Scheduling"
■  Operations on Processes"
■  Inter-Process Communication (IPC)"
■  Communication in Client-Server Systems"

3.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

■  To introduce the notion of a process -- a program in execution, which forms the
 basis of all computations"

■  To describe the various operations and features of processes, including scheduling,
 creation and termination, and communication"

■  To explore interprocess communication using shared memory and message passing"

■  To describe communication in client-server systems"

3.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Concept
■  An operating system executes a variety of programs:"

●  A batch system executes jobs and a time-shared systems has user programs or tasks"
■  Textbook uses the terms job and process almost interchangeably"
■  Process – a program in execution; process execution must progress in sequential fashion"
■  A process include:"

●  The program code, also called text section!
●  Current activity, represented by the program counter, processor registers"
●  Stack containing temporary data (such as function parameters, return addresses, local variables)"
●  Data section containing global variables"
●  Heap containing memory dynamically allocated during run time"

■  Program is a passive entity such as a file containing a list of instructions stored on disk
 (executable file), "

■  A process is an active entity, with a program counter specifying the next instruction to execute
 and a set of associated resources."

■  A program becomes a process when an executable file is loaded into memory"
●  Execution of program started via (1) GUI mouse clicks, (2) command line entry of its name"

■  One program can be used by several processes"
●  Consider multiple users executing the same program"

"

3.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process in Memory

Program code"

Global variables"

Temporary data (function parameters,"
return addresses, and local variables)"

Memory dynamically allocated during"
process run time"

3.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process States and Diagram
n  As a process executes, it changes state, which is defined by the current activity"

l  New: The process is being created"
l  Running: Instructions are being executed"
l  Waiting: The process is waiting for some event to occur (such as I/O completion)"
l  Ready: The process is waiting to be assigned to a processor (CPU)"
l  Terminated: The process has finished execution"

Only one process "
at any instant"

Could have multiple "
processes"

3.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Control Block (PCB)
■  Each process is represented by a process control

 block in the operating system (also called task
 control block)"

■  Process state – running, waiting, ready, halted, and so on"
■  Program counter – location of instruction to next execute"
■  CPU registers – contents of all process-centric registers"
■  CPU scheduling information - priorities, scheduling

 queue pointers"
■  Memory-management information – memory allocated to

 the process"
■  Accounting information – CPU used, clock time elapsed

 since start, time limits"
■  I/O status information – I/O devices allocated to process,

 list of open files"

3.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

CPU Switch From Process to Process

3.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Threads
■  So far, process has a single thread of execution"

●  This single thread of control allows a process to perform only one task at a time. "
●  If this is the case, a word-processor program cannot simultaneously type in characters

 and run the spell checker at the same time."
●  Most modern OS allows a process to have multiple threads of execution, thus to perform

 more than one task at a time."
●  This can best take advantage of the multicore systems, where multiple threads of one

 process can run in parallel."

■  PCB has to be expanded to include information for each thread"
●  Multiple locations can execute at once"
●  Multiple program counters, one for each thread"

■  Chapter 4 discusses the details on Thread!

3.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Representation in Linux
■  Represented by the C structure task_struct

pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this process */

3.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process =? Program

■  A process is more than just a program:"
●  A program is just part of the process state"

■  A process is “less” than a program:"
●  A program can be invoked or called by more than one process"

■  A program is static (line of codes stored) and a process has a “life” and is always in
 some “state”"

main () {

 …;

}

A() {

 …

}

main () {

 …;

}

A() {

 …

}

Heap"
"
"
"

Stack"
"
A"

main"

Program! Process!

3.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Scheduling

■  Maximize CPU use, quickly switch processes onto CPU for time sharing"
■  Process scheduler selects among available processes for next execution on CPU"
■  Maintains scheduling queues of processes"
"

●  Job queue – set of all processes in the system"
●  Ready queue – set of all processes residing in main memory, ready and waiting

 to execute"
●  Device queues – set of processes waiting for an I/O device"
●  Processes migrate among the various queues"

3.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Ready Queue And Various
I/O Device Queues

3.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Representation of Process Scheduling

■  Queuing diagram represents queues, resources, flows"

3.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Schedulers

■  Long-term scheduler (or job scheduler) – selects which processes should be brought
 into the ready queue"

■  Short-term scheduler (or CPU scheduler) – selects which process should be executed
 next and allocates CPU"

"
■  Short-term scheduler is invoked very frequently (milliseconds) (must be fast)"
■  Long-term scheduler is invoked very infrequently (seconds, minutes) (may be slow)"
■  The long-term scheduler controls the degree of multiprogramming!

■  Processes can be described as either:"
●  I/O-bound process – spends more time doing I/O than computations, many short CPU

 bursts"
●  CPU-bound process – spends more time doing computations; few very long CPU bursts"

■  Long-term scheduler strives for good process mix"

3.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Addition of Medium Term Scheduling

■  Medium-term scheduler can be added if degree of multiple programming needs to be decreased"
●  Remove a process from the memory, store on disk, bring back later in from disk to continue

 execution: swapping"

3.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multitasking in Mobile Systems
■  Some systems / early systems allow only one process to run, others suspended"
■  Apple, beginning with iOS4, provides a limited form of multitasking for user applications"

●  A single foreground application run concurrently with multiple background applications"
●  Single foreground process- currently on display and controlled via user interface"
●  Multiple background processes– remain in memory, running, but not on the display"
●  Limited applications can run in background include single, finite-length task, receiving notification

 of events, specific long-running tasks like audio playback"
●  Constrained by battery life and memory usage"

■  Android runs foreground and background, with fewer limits"
●  There is no constraint on the types of applications that can run in background"
●  Background process uses a service to perform tasks, in which the service is a separate

 application component that runs on behalf of the background process"
●  Service can keep running even if background process is suspended"
●  Service has no user interface, small memory use, thus efficient"

3.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Context Switch
■  When CPU switches to another process, the system must save the state of the old process

 and load the saved state for the new process via a context switch"

■  Context of a process represented in the PCB"

■  Context-switch time is overhead; the system does no useful work while switching"
●  The more complex the OS and the PCB -> longer the context switch"
●  Typical speed is a few milliseconds"

■  Context-switch times are highly dependent on hardware support"
●  Some hardware provides multiple sets of registers per CPU (such as the SUN UltraSPARC) ->

 multiple contexts loaded at once"

3.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operations on Processes

■  The processes in most systems can execute concurrently, and they may be created
 and deleted dynamically. "

■  System must provide mechanisms for process creation, termination, and so on as
 detailed next"

3.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Creation
■  A Parent process create children processes, which, in turn create other processes, forming a

 tree of processes"

■  Generally, process identified and managed via a process identifier (pid)"

■  Resource sharing options"
●  Parent and children share all resources"
●  Children share subset of parent’s resources"
●  Parent and child share no resources"

■  Execution options"
●  Parent and children execute concurrently"
●  Parent waits until children terminate"

"

3.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

3.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Creation (Cont.)

■  Address space"
●  Child duplicate of parent"
●  Child has a program loaded into it"

■  UNIX examples"
●  fork() system call creates new process, which duplicates the address space of the parent"
●  exec() system call used after a fork() to replace the process’ memory space with a new program"

3.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 What does it take to Create a Process?
■  Must construct new PCB "

●  Inexpensive"

■  Must set up new page tables for address space"
●  More expensive"

■  Copy data from parent process? (Unix fork())"
●  Semantics of Unix fork() are that the child process gets a complete copy of the parent

 memory and I/O state"

●  Originally very expensive"

■  Copy I/O state (file handles, etc)"
●  Medium expense"

3.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

fork(): create a new process

n Duplicated
n Address space
n Global & local

variables
n Current working

directory
n Root directory
n Process resources
n Resource limits
n etc…

n Different
n PID
n Running time
n Running state
n Return values from

fork()

Parent & Child:

3.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Return values of fork()	
■  The return value of the function is which discriminates the two processes of

execution. "

■  Upon successful completion, fork() return 0 to the child process and return the
process ID of the child process to the parent process. "

■  Otherwise, (pid_t)-1 is returned to the parent process, no child process is created,
and errno is set to indicate the error.	

3.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Return values of fork()

n Successful

fork()

child

parent

0

Child’s PID

n Not Successful

fork()

child

parent -1

errno is set to indicate error

3.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

C Program Forking Separate Process
int main()	
{	
pid_t pid;	

	/* fork another process */	
	pid = fork();	
	if (pid < 0) { /* error occurred */	
		fprintf(stderr, "Fork Failed");	
		exit(-1);	
	}	
	else if (pid == 0) { /* child process */	
		execlp("/bin/ls", "ls", NULL);	
	}	
	else { /* parent process */	
		/* parent will wait for the child to
 complete */	
		wait (NULL);	
		printf ("Child Complete");	
		exit(0);	
	}	

}	

3.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Creating a Separate Process via Windows API

3.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Fork() and CreateProcess()

■  fork() has the child process inheriting the address space of its parent, while
 CreateProcess() requires loading a specified program into the address space of the
 child process at process creation"

■  fork() is passed no parameters, CreateProcess() expects no fewer than 10
 parameters. In the example above, application mspaint.exe is loaded"

3.30! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Termination
■  Process executes last statement and asks the operating system to delete it (exit())"

●  Output data from child to parent (via wait())"
●  Process’ resources are deallocated by operating system"

■  Parent may terminate execution of children processes (abort())"
●  Child has exceeded its usage of some of the resources that has been allocated"
●  Task assigned to child is no longer required"
●  If parent is exiting"

!  Some operating systems do not allow child to continue if its parent terminates"
–  All children terminated - cascading termination!

■  A parent process may wait for the termination of a child process by using wait() system call,
 returning the pid, so the parent process can tell which of its children has terminated."

pid t pid; int status;

pid = wait(&status);

■  If no parent waiting, then terminated process is a zombie. Once the parent calls wait(), the
 process identifier of the zombie process and its entry in the process table are released"

■  If parent terminated without calling wait(), the child processes are orphans. Linux and Unix
 assign the init process as the new process to orphan processes."

3.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Interprocess Communication
■  Processes within a system may be independent or cooperating!
■  Cooperating process can affect or be affected by other processes, including sharing data"
■  Reasons for cooperating processes:"

●  Information sharing, for instance a shared file"
●  Computation speedup: subtasks of a task execute in parallel on multicore"
●  Modularity: system functions are divided into multiple processes or threads"
●  Convenience: users may work on multiple tasks in parallel ""

■  Cooperating processes need an interprocess communication (IPC) mechanism that allow
 them to exchange data and information"

■  Two models of IPC, both common in operating systems"
●  Shared memory!
●  Message passing!

3.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multiple Processes Collaboration

■  Need communication mechanisms:"
●  Separate address spaces different processes"
●  Shared-Memory Mapping"

!  Accomplished by mapping addresses to shared-memory regions"
!  System calls such as read() and write() through memory"
!  This suffers from cache coherency issues in multicores (with multiple cache)"

●  Message Passing"
!  send() and receive() messages"
!  Can work across network"
!  Better performance in multicore systems."

Proc 1" Proc 2" Proc 3"

3.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Communications Models

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

3.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Producer-Consumer Problem

■  Paradigm for cooperating processes, producer process produces information
 that is consumed by a consumer process"
●  unbounded-buffer places no practical limit on the size of the buffer"
●  bounded-buffer assumes that there is a fixed buffer size"

3.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded-Buffer – Shared-Memory Solution

■  Shared data"

#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;
"

■  Solution is correct, but can only use BUFFER_SIZE-1 elements"

!

3.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded-Buffer – Producer

	
item next produced;

while (true) {

 /* produce an item in next produced */

 while (((in + 1) % BUFFER SIZE) == out)

 ; /* do nothing */

 buffer[in] = next produced;

 in = (in + 1) % BUFFER SIZE;

}

	
"

""
"

3.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer – Consumer

item next consumed;

while (true) {
 while (in == out)

 ; /* do nothing */
 next consumed = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 /* consume the item in next consumed */

}

3.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Interprocess Communication – Message Passing

■  Mechanism for processes to communicate and to synchronize their actions"

■  Message system – processes communicate with each other without resorting to shared
 variables"

■  IPC facility provides atleast two operations:"
●  send(message) – message size fixed or variable "
●  receive(message)"

■  If P and Q wish to communicate, they need to:"
●  establish a communication link between them"
●  exchange messages via send/receive"

■  Implementation of communication link"
●  physical (e.g., shared memory, hardware bus)"
●  logical (e.g., direct or indirect, synchronous or asynchronous, automatic or explicit buffering)"

3.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Implementation Questions
■  How are links established?"

■  Can a link be associated with more than two processes?"

■  How many links can there be between every pair of communicating processes?"

■  What is the capacity of a link?"

■  Is the size of a message that the link can accommodate fixed or variable?"

■  Is a link unidirectional or bi-directional?"

3.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Direct Communication
■  Processes must name each other explicitly:"

●  send (P, message) – send a message to process P"
●  receive(Q, message) – receive a message from process Q"

■  Properties of communication link"
●  A link is established automatically"
●  A link is associated with exactly one pair of communicating processes"
●  Between each pair there exists exactly one link"
●  The link may be unidirectional, but is usually bi-directional"

3.41! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication
■  Messages are directed and received from mailboxes (also referred to as ports)"

●  Each mailbox has a unique id"
●  Processes can communicate only if they share a mailbox"

■  Properties of communication link"
●  A link is established only if processes share a common mailbox"
●  A link may be associated with more than two processes"
●  Each pair of processes may share several communication links, i.e., mailboxes"
●  Link may be unidirectional or bi-directional"

3.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication
■  Operations"

●  create a new mailbox"
●  send and receive messages through mailbox"
●  destroy a mailbox"

■  Primitives are defined as:"
"send(A, message) – send a message to mailbox A"
"receive(A, message) – receive a message from mailbox A"

3.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication
■  Mailbox sharing"

●  P1, P2, and P3 share mailbox A"
●  P1, sends; P2 and P3 receive"
●  Who gets the message?"

■  Different methods can be chosen: "
●  Allow a link to be associated with at most two processes"
●  Allow at most one process at a time to execute a receive() operation"
●  Allow the system to select arbitrarily the receiver. The system may define an algorithm for selecting

 which process will receive the message (for example, round-robin), Sender is notified who the
 receiver was."

3.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization
■  Message passing may be either blocking or non-blocking"

■  Blocking is considered synchronous!
●  Blocking send: The sending process is blocked until the message is received by the receiving

 process or by the mailbox"
●  Blocking receive: The receiver blocks until a message is available"

■  Non-blocking is considered asynchronous!
●  Non-blocking send: The sending process sends the message and resumes its operation"
●  Non-blocking receive: The receiver retrieves a valid message or null"

}

3.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization (Cont.)
■  Different combinations possible"

●  If both send and receive are blocking, we have a rendezvous!
■  Producer-consumer becomes trivial  

"

message next produced;

while (true) {
 /* produce an item in next produced */

 send(next produced);

}

message next consumed;
while (true) {
 receive(next consumed);

 /* consume the item in next consumed */
}

3.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Buffering
■  Queue of messages attached to the link (director indirect); implemented in one of three ways"

1. "Zero capacity – 0 messages 
Sender must wait for receiver (rendezvous)"

2. "Bounded capacity – finite length of n messages 
Sender must wait if link full"

3. "Unbounded capacity – infinite length  
Sender never waits"

3.47! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Communications in Client-Server Systems

■  Sockets"
"
■  Pipes"
"

3.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Sockets
■  A socket is defined as an endpoint for communication"

■  Concatenation of IP address and port – a number included at start of message packet to differentiate
 network services on a host"

■  The socket 161.25.19.8:1625 refers to port 1625 on host IP address 161.25.19.8!

■  Communication consists between a pair of sockets"

■  All ports below 1024 are well known, used for standard services"

■  Special IP address 127.0.0.1 (loopback) to refer to system on which process is running"

3.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Socket Communication

3.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pipes
■  Acts as a conduit allowing two processes to communicate"
■  Pipes were one of the first IPC mechanisms in early UNIX systems"

■  Four Issues must be considered:"
●  Is communication unidirectional or bidirectional?"
●  In the case of two-way communication, is it half or full-duplex?"
●  Must there exist a relationship (such as parent-child) between the communicating processes?"
●  Can the pipes be used over a network or must reside on the same machine?"

3.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Ordinary Pipes
■  Ordinary pipes allow communication in standard producer-consumer style- pipe(int	 fd[])  

"
■  Producer writes to one end (the write-end of the pipe) fd[1] 

"
■  Consumer reads from the other end (the read-end of the pipe) fd[0] 

"
■  Ordinary pipes are therefore unidirectional, UNIX treats a pipe as a special type of file. 

"
■  Require parent-child relationship between communicating processes on the same machine"

■  Ordinary pipe ceases to exist after the processes have finished communicating and terminated"
"
"

"
■  Windows calls these anonymous pipes!
■  See Unix and Windows code samples in textbook"

3.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Named Pipes
■  Named Pipes are more powerful than ordinary pipes 

"
■  Communication is bidirectional  

"
■  No parent-child relationship is necessary between the communicating processes 

"
■  Several processes can use the named pipe for communication  

"
■  Provided on both UNIX and Windows systems"

■  Name pipes continue to exist after communicating processes have finished."
"

Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

End of Chapter 3

