
Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 2: System Structures

2.2! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 2: Operating System Structures

■  Operating System Services"
■  System Calls"
■  System Programs"
■  Operating System Design and Implementation"
■  Operating System Structure"
■  Virtual Machines"

2.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

■  To describe the services that an operating system provides to users"
"
■  To discuss the various ways of structuring an operating system"

2.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

A View of Operating System Services

2.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Services

■  One set of operating-system services provides functions that
 are helpful to the user:"
●  User interface - Almost all operating systems have a user interface"

! Varies between Command-Line (CLI), Graphics User Interface
 (GUI), batch interface (file execution)"

●  Program execution - The system must be able to load a program into
 memory and to run that program, end execution, either normally or
 abnormally (indicating error)"

●  I/O operations - A running program may require I/O, which may
 involve a file or an I/O device. User can not access I/O device directly "

●  File-system manipulation - Programs need to read and write files and
 directories, create and delete them, search them, list file Information,
 permission management."

2.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Services (Cont)

■  One set of operating-system services provides functions that
 are helpful to the user (Cont):"
●  Communications – Processes may exchange information between

 processes, on the same computer or different computers over a
 network"
! Communications may be via shared memory or through message

 passing (packets moved by the OS)"
●  Error detection – OS needs to detect and correct errors constantly"

! May occur in the CPU and memory hardware (memory error or
 power failure), in I/O devices (parity error on a disk, network
 connection problem, lack of papers on a printer), in user programs
 (arithmetic overflow, an attempt to access illegal memory location)"

! For each type of error, OS should take the appropriate action to
 ensure correct and consistent computing"

2.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Services (Cont)

■  Another set of OS functions exists for ensuring the efficient operation of the
 system itself via resource sharing"
●  Resource allocation - When multiple users or multiple jobs are running

 concurrently, resources must be allocated to each of them"
!  Many types of resources - Some (such as CPU cycles, main memory, and file

 storage) may have special allocation code, others (such as I/O devices) may
 have general request and release code "

●  Accounting - To keep track of which users use how much and what
 kinds of computer resources"

●  Protection and security - The owners of information stored may want to
 control use of that information, concurrent processes should not
 interfere with each other"
!  Protection involves ensuring that all access to system resources is controlled"
!  Security of the system from outsiders requires user authentication, extends to

 defending external I/O devices from invalid access attempts"
!  If a system is to be protected and secure, precautions must be instituted

 throughout it. A chain is only as strong as its weakest link."

2.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

User Operating System Interface - CLI

■  Command Line Interface (CLI) or command interpreter
 allows direct command entry"
●  Sometimes implemented in kernel, sometimes by systems program"
●  Sometimes multiple command interpreters to choose from – shells!
●  Primarily fetches a command from user and executes it"
●  UNIX, Linux and MS DOS"

2.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bourne Shell Command Interpreter

2.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

User Operating System Interface - GUI
■  User-friendly desktop metaphor interface"

●  Usually mouse, keyboard, and monitor"
●  Icons represent files, programs, actions, etc"
●  Various mouse buttons over objects in the interface cause various

 actions such as invoke a program, select a file or directory, or pull down
 a menu that contains commands"

●  Invented at Xerox PARC in earlier 1970s, and widely used in Apple
 Macintosh computers in the 1980s"

■  Many systems now include both CLI and GUI interfaces"
●  Microsoft Windows is GUI with CLI “command” shell"
●  Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath

 and shells available (CLI)"
●  Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,

 GNOME)"

2.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

The Mac OS X GUI

2.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Touchscreen Interfaces

■  Touchscreen devices require new
 interfaces"
●  Mouse not possible or not desired"
●  Actions and selection based on

 gestures"
●  Virtual keyboard for text entry"

"
"

2.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Calls
■  Programming interface to the

 services provided by the OS"
■  Typically written in a high-level

 language (C or C++), certain
 low-level tasks (i.e., accessing
 hardware) may have to be in
 assembly languages"

■  An example – system call
 sequence to copy the contents
 of one file to another file"

■  Simple programs make heavy
 use of the OS. Frequently,
 systems execute thousands of
 system calls per second"

■  Hide this level of details from
 programmers"

2.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Calls - API

■  Application Program Interface (API) specifies a set of functions that are
 available to an application programmer, including the parameters
 passed to the function and return values it expects"

■  The functions that make up an API typically invoke the actual system
 calls on behalf of the application programmer. "

■  Three most common APIs "
●  Win32 API for Windows systems"
●  POSIX API for POSIX-based systems (including virtually all

 versions of UNIX, Linux, and Mac OS X)"
●  Java API for the Java virtual machine (JVM)"

■  Why use APIs rather than invoking system calls?"
●  Hide the complex details of the system call from users"
●  Program portability"

2.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Standard API

2.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Call Implementation

■  For most programming languages, the run-time support system
 (a set of functions built into libraries) provide a system call
 interface that serves as the link to system calls of OS"

■  Typically, a number associated with each system call"
●  System-call interface maintains a table indexed according to these

 numbers"

■  The system call interface intercepts function calls in the API,
 invokes the necessary system call in OS kernel, and returns
 status of the system call and return value(s) if any"

■  The caller need know nothing about how the system call is
 implemented"
●  needs to obey API and understand what OS will do as a result call"
●  Most details of OS interface hidden from programmer by API "

2.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

API – System Call – OS Relationship

2.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Call Parameter Passing

■  Often, more information is required than simply the identity of desired
 system call"
●  The exact type and amount of information vary according to OS

 and call"

■  Three general methods used to pass parameters to the OS"
●  Simplest: pass the parameters in registers"

!  In some cases, may be more parameters than registers"
●  Parameters stored in a block, or table, in memory, and address of

 block passed as a parameter in a register "
! This approach taken by Linux and Solaris"

●  Parameters placed, or pushed, onto the stack by the program and
 popped off the stack by the operating system"

●  Block and stack methods do not limit the number or length of
 parameters being passed"

2.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Parameter Passing via Table

2.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Types of System Calls
■  Process control"

●  end, abort"
●  load, execute"
●  create process, terminate process"
●  get process attributes, set process attributes"
●  wait for time"
●  wait event, signal event"
●  allocate and free memory"
"

■  File management"
●  create file, delete file"
●  open, close file"
●  read, write, reposition"
●  get and set file attributes"
"
"

2.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Types of System Calls (Cont.)

■  Device management"
●  request device, release device"
●  read, write, reposition"
●  get device attributes, set device attributes"
●  logically attach or detach devices"
"

■  Information maintenance"
●  get time or date, set time or date"
●  get system data, set system data"
●  get and set process, file, or device attributes"

2.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Types of System Calls (Cont.)

■  Communications"
●  create, delete communication connection"
●  send, receive messages if message passing model to host name or

 process name!
! From client to server!

●  Shared-memory model create and gain access to memory regions"
●  transfer status information"
●  attach and detach remote devices"
"

■  Protection"
●  Control access to resources"
●  Get and set permissions"
●  Allow and deny user access"

2.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Examples of Windows and
Unix System Calls

2.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Standard C Library Example
■  The standard C library provides a portion of the system-call interface for

 many versions of UNIX and Linux."
■  C program invokes printf() statement, the C library intercepts this call and

 invokes the necessary system call write(), takes the return value and
 pass to the user program"

2.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Programs
■  System programs, or system utilities, provide a convenient

 environment for program development and execution. They can
 be divided into:"
●  File manipulation: create, delete, copy, rename, print, dump, list. … "
●  Status information: time/date, memory usage, logging ad debugging info."
●  File modification; file editor for example"
●  Programming-language support: compiler, assemblers, debuggers "
●  Program loading and execution"
●  Communications!
●  Background services: for example constant running system program

 processes known as services, subsystems, or daemons."
●  Application programs: Web browsers, word processors, spreadsheets,

 database systems, games. .."

■  Most users’ view of an operation system is defined by system
 programs, not the actual system calls"

2.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Programs (Cont.)

■  Provide a convenient environment for program development and
 execution"
●  Some of them are simply user interfaces to system calls; others

 are considerably more complex"

■  File management - Create, delete, copy, rename, print, dump, list,
 and generally manipulate files and directories"

■  Status information!
●  Some ask the system for info - date, time, amount of available

 memory, disk space, number of users"
●  Others provide detailed performance, logging, and debugging

 information"
●  Typically, these programs format and print the output to the

 terminal or other output devices"
●  Some systems implement a registry - used to store and retrieve

 configuration information"
"

2.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Programs (Cont.)

■  File modification!
●  Text editors to create and modify files"
●  Special commands to search contents of files or perform

 transformations of the text"

■  Programming-language support - Compilers, assemblers,
 debuggers and interpreters sometimes provided"

■  Program loading and execution- Absolute loaders, relocatable
 loaders, linkage editors, and overlay-loaders, debugging systems for
 higher-level and machine language"

■  Communications - Provide the mechanism for creating virtual
 connections among processes, users, and computer systems"
●  Allow users to send messages to one another’s screens, browse

 web pages, send electronic-mail messages, log in remotely,
 transfer files from one machine to another"

2.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Programs (Cont.)

■  Background Services!
●  Launch at boot time"

! Some for system startup, then terminate"
! Some from system boot to shutdown"

●  Provide facilities like disk checking, process scheduling, error
 logging, printing"

●  Run in user context not kernel context"
●  Known as services, subsystems, daemons !
"

■  Application programs!
●  Don’t pertain to system"
●  Run by users"
●  Not typically considered part of OS"
●  Launched by command line, mouse click, finger poke"
●  Web browsers, word processors, spreadsheets, database

 systems, games"

2.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Design
and Implementation

■  Design and Implementation of OS not “solvable”, but some
 approaches have proven to be successful"

■  Internal structure of different Operating Systems can vary widely"

■  Start by defining goals and specifications "

■  Affected by choice of hardware, type of system (batch, time sharing,
 single user, multiuser, distributed, real time, or general purpose)"

■  User goals and System goals – much harder to specify"
●  User goals – operating system should be convenient to use, easy

 to learn, reliable, safe, and fast"
●  System goals – operating system should be easy to design,

 implement, and maintain, as well as flexible, reliable, error-free,
 and efficient"

2.30! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Design and
Implementation (Cont.)

■  Important principle to separate"
!Policy: What will be done?  
Mechanism: How to do it?"

"
■  Mechanisms determine how to do something, policies decide what will

 be done"
●  The separation of policy from mechanism is a very important

 principle, it allows maximum flexibility if policy decisions are to be
 changed later"

■  Specifying and designing OS is highly creative task of software
 engineering!

!
■  Policy decisions are important for all resource allocations"

"
"

2.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Implementation

■  Much variation"
●  Early OSes in assembly language"
●  Then system programming languages like Algol, PL/1"
●  Now most operating systems are written in C, C++"

■  Actually usually a mix of languages"
●  Lowest levels in assembly"
●  Main body in C"
●  Systems programs in C, C++, scripting languages like PERL,

 Python, shell scripts"
■  More high-level language easier to port to other hardware"

●  The code can be written faster, more compact, easier to debug"
●  But slower and might require more storage"

"
"

2.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Structure

■  General-purpose OS is a very large program, must be carefully
 engineered to function properly and be modified easily"

■  A common approach is to partition the task into small components,
 or modules, rather than have one monolithic system."
●  Each of these modules should be a well-defined portion of the system,

 with carefully defined inputs, outputs, and functions"

■  Various ways to structure one as follows"

2.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Simple Structure

■  Such Oses do not have well-defined
 structure, usually started as small,
 simple and limited systems"

■  MS-DOS – written to provide the
 most functionality in the least space"
●  Not carefully divided into modules"
●  Although it has some structure,

 interfaces and levels of functionality
 are not well separated – i.e., app
 programs can access I/O directly"

●  Written for Intel 8088 with no dual
 mode and no hardware protection"

2.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

UNIX

■  UNIX – initially limited by hardware functionality, the original UNIX
 operating system had limited structuring. "

■  The UNIX OS consists of two separable parts: the kernel and system
 programs "

■  The kernel is further separated into a series of interfaces and device
 drivers, which have been expanded over the years."

■  In traditional UNIX, the kernel consists of everything below the system
-call interface and above the physical hardware"
●  It provides the file system, CPU scheduling, memory management,

 and other operating-system functions; an enormous amount of
 functionality combined into one level. This monolithic structure
 makes it difficult to implement and maintain"

●  A distinct performance advantage is that there is little overhead in
 the system call interface or in communication with the kernel"

2.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Traditional UNIX System Structure

Beyond simple but not fully layered

2.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Layered Approach
■  One type of modular approaches"

■  The operating system is divided into a number of layers (levels), each
 built on top of lower layers. "

●  The bottom layer (layer 0) is the hardware; "

●  The highest (layer N) is the user interface"

"

■  The main advantage of a layered approach the simplicity of construction
 and debugging. The layers are selected such that each uses functions
 (operations) and services of only lower-level layers"

■  The major difficulty involves appropriately defining the various layers.
 Also this tends to be less efficient as each layer adds overhead – Few
 layers with more functionality in recent years."

2.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Layered Approach (Cont.)

■  An OS layer is an implementation
 of an abstract object made up of
 data and operations manipulating
 those data "

■  A layer M consists of data structure
 and a set of routines that can be
 involved by higher-level layers.
 Layer M, in turn, can invoke
 operations on lower-level layers"

"
■  Information hiding: a layer does not

 need to know how the lower-layer
 operations are implemented, only
 what these operations do."

"

2.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Microkernel System Structure
■  The kernel became large and difficult to manage "
■  Removing all nonessential components from the kernel and

 implementing them as system or user-level programs"
■  This results in a smaller kernel. Yet, there is little consensus

 regarding which services should remain in the kernel and which
 should be implemented in user space"
●  Typically, microkernels provide minimal process and memory

 management, in addition to a communication facility."
■  Mach, developed at CMU in mid-1980s, is an example of microkernel "
■  The main function of the microkernel is to provide communication

 between client program and various services also running in user space"
■  Communication is provided through message passing"

2.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Microkernel System Structure (Cont.)
■  Benefits:"

●  Easier to extend a microkernel OS, as all new services are added to
 user space without modification on the kernel"

●  When the kernel has to be modified, the changes are fewer, as the
 kernel is much smaller"

●  Easier to port the operating system to new architectures (hardware)"
●  More reliable and reliable (less code is running in kernel mode), since

 most services are running as user – not kernel processes. If a service
 fails, the rest of the OS remains untouched"

●  Mac OS X kernel (also known as Darwin) is partly based on Mach
 kernel"

"

■  Detriments:"
●  Performance of microkernels can suffer due to increased system

-function overhead, user space to kernel space communication"
●  Earlier Window NT had a layered microkernel, now more monolithic"

2.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

2.41! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Modules
■  Perhaps the best current methodology for OS design involves using loadable

 kernel modules"
■  It provides core services while other services are dynamically implemented as

 the kernel is running"
●  Recompiling the kernel is required each time new features are added"
●  For example, the kernel has CPU scheduling and memory management algorithms,

 and adds support for different file systems by way of loadable modules"
■  This resembles a layered system in that each kernel section has defined,

 protected interface, but it is more flexible as any module can call any other
 module (no higher or lower layer relationship)"

■  It is also similar to the microkernel approach in that the primary module has
 only core functions and knowledge of how to load and communicate with
 other modules; but more efficient because modules do not need to invoke
 message passing in order to communicate"

■  This type of design is common in modern implementation of UNIX, such as
 Solaris, Linux, and Mac OS x, as well as Windows"

2.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solaris Modular Approach

2.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Hybrid Systems
■  In practice, very few operating systems adopt a single, strictly

 defined structure. Instead they combine different structures,
 resulting in hybrid systems that address performance, security,
 usability needs"
"
● Both Linux and Solaris are monolithic, because having the OS in a single
 address space provides very efficient performance. They are also modular
 for dynamic loading of new functionality"
● Windows largely monolithic (primarily performance reason), but retains
 some behavior typical of microkernel systems, including providing support
 for different subsystems (known as OS personalities) that run as user
-mode processes. Windows systems also provide support for dynamically
 loadable kernel modules."
"

2.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Mac OS X

■  Apple Mac OS X uses a hybrid structure. "
■  It is a layered system"
■  The top layers include Aqua user interface and a set of application

 environments and services. Cocoa environment specifies an API for
 the Objective-C language, used for writing Mac OS X applications"

■  Below is kernel environment, consisting of the Mach microkernel and
 BSD Unix parts, plus I/O kit and dynamically loadable modules
 (called kernel extensions)"
●  MACH microkernel provides memory management support for RPC, IPC"
●  BSD components provides a BSD command-line interface, support for

 networking and file systems, and an implementation of POSIX APIs,
 including Pthreads"

2.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

2.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

iOS

■  Apple mobile OS for iPhone, iPad (close-sourced)"
●  Structured on Mac OS X, added functionality

 pertinent to mobile devices"
●  Does not run OS X applications natively"

! Also runs on different CPU architecture
 (ARM vs. Intel)"

●  Cocoa Touch Objective-C API for developing
 apps (touch screen features)"

●  Media services layer for graphics, audio,
 video"

●  Core services provides support for cloud
 computing, databases"

●  Core OS represents the core operating
 system, which is based on Mac OS X kernel
 environment"

Cocoa Touch

Media Services

Core Services

Core OS

2.47! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Android

■  Developed by Open Handset Alliance (led primarily by Google)"
●  Open-source"

■  Similar stack to iOS in that it is a layered stack of software"
■  Based on Linux kernel but modified"

●  Provides process, memory, device-driver management"
●  Adds power management "

■  Runtime environment includes core set of libraries and Dalvik virtual
 machine"
●  Apps developed in Java (non-standard Java API, based on Android API),

 run on Dalvik virtual machine"
●  Dalvik optimized for mobile devices with limited memory and CPU"

■  Libraries include frameworks for web browser (webkit), database
 (SQLite), and multimedia, "

■  The libc library is similar to standard C library, but much smaller,
 designed for slower CPUs in mobile devices"

2.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Android Architecture Applications

Application Framework

Android runtime

Core Libraries

Dalvik
virtual machine

Libraries

Linux kernel

SQLite openGL

surface
manager

webkit libc

media
framework

2.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Virtual Machines
■  The virtual machine creates the illusion of multiple processes, each

 executing on its own processor with its own (virtual) memory"
■  Software emulation of an abstract machine"

●  Make it look like hardware that has features you want"
●  Programs from one hardware & OS on another one"

■  Programming simplicity"
●  Each process thinks it has all memory/CPU time"
●  Each process thinks it owns all devices"
●  Different devices appear to have same interface"

■  Fault Isolation"
●  Processes unable to directly impact other processes"
●  Bugs cannot crash whole machine"

■  Protection and Portability"
●  Java virtual machine: Java interface safe and stable across many platforms"

2.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Virtual Machines (Cont)

■  Allows operating systems to run as applications within other OSes"
"

■  Emulation used when source CPU type different from target type"
●  Generally slowest method, as each machine-level instruction must

 be translated into equivalent instruction on the target system"
●  For example, Apple moved from IBM PowerPC to Intel x86 CPU, it

 included an emulation facility that allowed applications complied for
 the IBM CPU to run on the Intel CPU!

■  Virtualization – OS running as guest OS within another OS (host)"
●  VMM or Virtual Machine Manager provides virtualization services. It

 has more privileges than user processes, but fewer than the kernel
 (more than the dual-mode). VMM runs the guest operating system,
 manages their resource use, and protect each guest fom others"

●  Consider VMware running multiple WinXP guests, each running
 applications, in which Windows is the host OS, VMware application
 is the VMM."

2.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Virtual Machines (Cont)

"
"
"
"
"
"
"
"
"
"
"
 (a) Nonvirtual machine (b) virtual machine"

Non-virtual Machine" Virtual Machine"

2.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Virtual Machines (Cont)

■  Use cases involve laptops and desktops running multiple OSes
 for exploration or to run applications written for operating
 systems other than the native host (machine)"
●  Apple laptop running Mac OS X host, Windows as a guest to allow

 execution of Windows application"
●  Multiple operating systems can use virtualization to run all of those

 operating systems on a single physical server for development,
 testing, and debugging. "

●  Virtualization has become a common method of executing and
 managing compute environments within data centers"

2.53! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Virtual Machines (Cont): Layers of OS
■  Useful for OS development"

●  When OS crashes, restricted to one VM"
●  Can aid testing programs on other OS"

2.54! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Nachos: Virtual OS Environment
You will be working with Nachos !
■ Instructional software allows to study and modify OS functions. It runs as a UNIX
 process, while a real operating system runs on hardware"
■ Nachos simulates the general low-level facilities of typical hardware, including
 interrupts, virtual memory and interrupt-driven I/O"
■ To test the concepts you learn about thread, multiprogramming, virtual memory, file
 systems and networking"
■ Machos written in C++ and well organized, making it easier to understand the
 operation of a typical operating system"

Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

End of Chapter 2

