=

/:"-“""J
Q"“’ff’_’ Chapter 2: Operating System Structures

Operating System Services

System Calls

System Programs

Operating System Design and Implementation

Chapter 2: System Structures

|
|
[]
|
B Operating System Structure
|

Virtual Machines

Operating System Concepts — 9" Edition Silberschatz, Galvin and Gagne ©2013 Operating System Concepts — 9*" Edition 2.2 Silberschatz, Galvin and Gagne ©2013

E.S

41‘5'»13;‘ ’ /m”-l S
ot Objectives sﬁt,:v{ A View of Operating System Services

B To describe the services that an operating system provides to users

user and other system programs

B To discuss the various ways of structuring an operating system Gul batch command line

user interfaces

system calls
program l{e] file o resource .
execution operations systems gomemunicatien allocation accounting
error pro;en?lon
detection ; security
services

operating system

hardware

W
)

= SG8))
Ve Vs

Operating System Concepts — 9" Edition 23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts — 9h Edition 24 Silberschatz, Galvin and Gagne ©2013

)

e~
Operating System Services : »7" Operating System Services (Cont)

B One set of operating-system services provides functions that B One set of operating-system services provides functions that
are helpful to the user:

are helpful to the user (Cont):
® User interface - AImost all operating systems have a user interface

® Communications — Processes may exchange information between
» Varies between Command-Line (CLI), Graphics User Interface processes, on the same computer or different computers over a
(GUI), batch interface (file execution) network

@ Program execution - The system must be able to load a program into » Communications may be via shared memory or through message
memory and to run that program, end execution, either normally or passing (packets moved by the OS)
abnormally (indicating error)

@ Error detection — OS needs to detect and correct errors constantly
® I,/O operatigns - A running.program may require I/O, which may » May occur in the CPU and memory hardware (memory error or
involve a file or an I/O device. User can not access I/O device directly power failure), in /O devices (parity error on a disk, network
® File-system manipulation - Programs need to read and write files and connection problem, lack of papers on a printer), in user programs
directories, create and delete them, search them, list file Information,

Lori (arithmetic overflow, an attempt to access illegal memory location)
permission management.

» For each type of error, OS should take the appropriate action to
/-/\ ensure correct and consistent computing
A58

, R — //'K(')
Operating System Concepts — 9" Edition 25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts — 90 Edition 2.6 Silberschatz, Galvin and Gagne ©2013
=

“*:j Operating System Services (Cont)

/""""J“
“"’7{,"’ User Operating System Interface - CLI

B Another set of OS functions exists for ensuring the efficient operation of the . .
system itself via resource sharing | Comman.d Line Interface (CLI) or command interpreter
® Resource allocation - When multiple users or multiple jobs are running allows direct command entry

concurrently, resources must be allocated to each of them

® Sometimes implemented in kernel, sometimes by systems program
> Many types of resources - Some (such as CPU cycles, main memory, and file ® Sometimes multiple command interpreters to choose from — shells
storage) may have special allocation code, others (such as 1/0O devices) may
have general request and release code ® Primarily fetches a command from user and executes it
® Accounting - To keep track of which users use how much and what

C ® UNIX, Linux and MS DOS
kinds of computer resources

@ Protection and security - The owners of information stored may want to
control use of that information, concurrent processes should not
interfere with each other

» Protection involves ensuring that all access to system resources is controlled

» Security of the system from outsiders requires user authentication, extends to
defending external I/O devices from invalid access attempts

» If a system is to be protected and secure, precautions must be instituted
throughout it. A chain is only as strong as its weakest link.

)5 in set (0.00 s.

V-
Silberschatz, Galvin and Gagne ©2013

lect * fro

Operating System Concepts — 9t" Edition 27

Operating System Concepts — 9t Edition 2.8 Silberschatz, Galvin and Gagne ©2013

=
&,441~
“>”'B Shell C d Int t
27 Bourne e ommana interpreter
Default
Is j iy
50 o
New Info Close Execute Bookmarks
Default | Default
PBG-Mac-Pro:~ pbg$ w
15:24 up 56 mins, 2 users, load averages: 1.51 1.53 1.65
USER Y FROM LOGING IDLE WHAT
pbg console - 14:34 50 -
pbg <000 = 15:05 -w
PBG-Mac-Pro:~ pbg$ iostat 5
i disk1 disk10 cpu load average
KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us sy id 1m Sm 15m
33.75 343 11.30 64.31 14 0.88 39.67 © 0.2 11 584 1.511.53 1.65
5.27 320 1.65 0.00 0 0.00 9.00 0 0.00 4 294 1.391.51 1.65
4.28 329 1.37 0.00 0 0.00 0.00 © 0.00 5 392 1.44 1.51 1.65
AC
PBG-Mac-Pro:~ pbg$ 1s
Applications Music WebEx
Applications (Parallels) Pando Packages config.log
Desktop Pictures getsmartdata. txt
Documents Public imp
Downloads Sites log
Dropbox Thumbs . db panda-dist
Library Virtual Machines prob. txt
Movies Volumes scripts
PBG-Mac-Pro:~ pbg$ pwd
/Users/pbg
PBG-Mac-Pro:~ pbg$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes
64 bytes from 192.168.1.1: icmp_seq-0 tt1-64 time-2.257 ms
64 bytes from 192.168.1.1: icmp_seq=1 tt1-64 time=1.262 ms
AC
--- 192.168.1.1 ping statistics ---
2 packets transmitted, 2 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 1.262/1.760/2.257/0.498 ms
PBG-Mac-Pro:~ pbg$ [] N
S SN
Operating System Concepts — 9t" Edition 2.9 Silberschatz, Galvin and Gagne ©2013

)

e
v ot The Mac OS X GUI

B3 mme S B B § D O A 6 oMo i 2 K D
=3]

Operating System Concepts — 9" Edition 2.1 Silberschatz, Galvin and Gagne ©2013

=

o
”’ User Operating System Interface - GUI

B User-friendly desktop metaphor interface
® Usually mouse, keyboard, and monitor
® |cons represent files, programs, actions, etc

@ Various mouse buttons over objects in the interface cause various
actions such as invoke a program, select a file or directory, or pull down
a menu that contains commands

® Invented at Xerox PARC in earlier 1970s, and widely used in Apple
Macintosh computers in the 1980s

B Many systems now include both CLI and GUI interfaces
® Microsoft Windows is GUI with CLI “command” shell

® Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath
and shells available (CLI)

® Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

S

_\\}

Ve

Operating System Concepts — 9*" Edition 2.10 Silberschatz, Galvin and Gagne ©2013

(=

P
: .} Touchscreen Interfaces

B Touchscreen devices require new
interfaces

® Mouse not possible or not desired

® Actions and selection based on
gestures

® Virtual keyboard for text entry

g

Operating System Concepts — 9*" Edition 2.12 Silberschatz, Galvin and Gagne ©2013

=
.|

o System Calls

B Programming interface to the

services provided by the OS ’—’
source file
B Typically written in a high-level |

:l destination file

language (C or C++), certain
low-level tasks (i.e., accessing
hardware) may have to be in Acquire output file name
Write prompt to screen

assembly languages Acceptinput

Open the input file

B An example — system call if fle doesn't exist, abort
Create output file

sequence to copy the contents B

of one file to another file lop
Read from input file

Write to output file
Until read fails

Acquire input file name
Write prompt to screen
Accept input

B Simple programs make heavy

use of the OS. Frequently, Slosclounyl
Write completion message to screen
systems execute thousands of Terminate normally

A

Example System Call Sequence

y

system calls per second

B Hide this level of details from
programmers

Operating System Concepts — 9t" Edition 213

Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard AP, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize-t and size-t data types (among other
things). The parameters passed to read () are as follows:
® int fd—the file descriptor to be read
® void *buf—a buffer where the data will be read into
® size-t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

Operating System Concepts — 9t" Edition 2.15

P

Silberschatz, Galvin and Gagne ©2013

)QE
—

3 System Calls - API

\
WS
b

Silberschatz, Galvin and Gagne ©2013

Application Program Interface (API) specifies a set of functions that are
available to an application programmer, including the parameters
passed to the function and return values it expects

B The functions that make up an API typically invoke the actual system
calls on behalf of the application programmer.

B Three most common APIs
® Win32 API for Windows systems
@ POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)
® Java API for the Java virtual machine (JVM)
B Why use APIs rather than invoking system calls?
@ Hide the complex details of the system call from users
® Program portability
Operating System Concepts — 9™ Edition 214 Silberschatz, Galvin and Gagr;: ©2(;;

System Call Implementation

Operating System Concepts — 9" Edition 2.16

B For most programming languages, the run-time support system
(a set of functions built into libraries) provide a system call
interface that serves as the link to system calls of OS

B Typically, a number associated with each system call

® System-call interface maintains a table indexed according to these
numbers

B The system call interface intercepts function calls in the API,
invokes the necessary system call in OS kernel, and returns
status of the system call and return value(s) if any

B The caller need know nothing about how the system call is
implemented

® needs to obey APl and understand what OS will do as a result call

® Most details of OS interface hidden from programmer by API

P

Silberschatz, Galvin and Gagne ©2013

».cf"""ka}
“%”” APl — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
. open
L | pen ()
2 Implementation
i » of open ()
- system call
. .
. .
.
return x«“\‘
AN
Oa
4 W
Operating System Concepts — 9" Edition 217 Silberschatz, Galvin and Gagne ©2013

=

o . .
*“}r’ Parameter Passing via Table

register

X: parameters
for call

load address X — from table X system
system call 13 — > call 13

» use parameters }code for

user program

operating system

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 2.19

s

=

“%7’ System Call Parameter Passing

B Often, more information is required than simply the identity of desired
system call

® The exact type and amount of information vary according to OS
and call

B Three general methods used to pass parameters to the OS
@ Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

® Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

» This approach taken by Linux and Solaris

® Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

® Block and stack methods do not limit the number or length of
parameters being passed

A

Operating System Concepts — 90 Edition 2.18 Silberschatz, Galvin and Gagne ©2013

£

O
X Types of System Calls

W Process control
® end, abort
load, execute
create process, terminate process
get process attributes, set process attributes
wait for time
wait event, signal event

allocate and free memory

B File management
e create file, delete file
® open, close file
® read, write, reposition

@ get and set file attributes £
Pa
Operating System Concepts — 9t Edition 2.20 Silberschatz, Galvin and Gagne ©2013

=

" 4,:<:mJ
Sl %'/

Types of System Calls (Cont.)

B Device management

® request device, release device

® read, write, reposition

@ get device attributes, set device attributes

@ logically attach or detach devices

B Information maintenance

@ get time or date, set time or date

@ get system data, set system data

@ get and set process, file, or device attributes

Operating System Concepts — 9t" Edition

221

Silberschatz, Galvin and Gagne ©2013

i Examples of Windows and

‘n\’ ;1'- /7

Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Operating System Concepts — 9t" Edition

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer()
Sleep()

CreatePipe()
CreateFileMapping ()
MapViewOfFile()

SetFileSecurity ()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipeQ
shmget ()
mmap ()

chmod ()
umask ()
chown ()

Silberschatz, Galvin and Gagne ©2013

E'N
5&.\/‘): v/

Types of System Calls (Cont.)

B Communications
® create, delete communication connection

® send, receive messages if message passing model to host name or
process name

» From client to server

Shared-memory model create and gain access to memory regions
transfer status information

attach and detach remote devices

B Protection
@ Control access to resources
® Get and set permissions
® Allow and deny user access

Operating System Concepts — 90 Edition 222 Silberschatz, Galvin and Gagne ©2013

£

me;,' '

Standard C Library Example

B The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux.

B C program invokes printf() statement, the C library intercepts this call and
invokes the necessary system call write(), takes the return value and
pass to the user program

#include <stdio.h>
int main ()

— printf ("Greetings");
.
.

.
return 0;

}

user
mode

standard C library
kernel

mode
Qme 0 >

write ()
system call
. /)} X
A 2
Operating System Concepts — 9t Edition 2.24 Silberschatz, Galvin and Gagne ©2013

=

o
3 System Programs

B System programs, or system utilities, provide a convenient
environment for program development and execution. They can
be divided into:

File manipulation: create, delete, copy, rename, print, dump, list. ...

Status information: time/date, memory usage, logging ad debugging info.

File modification; file editor for example

Programming-language support: compiler, assemblers, debuggers

Program loading and execution

Communications

Background services: for example constant running system program
processes known as services, subsystems, or daemons.

® Application programs: Web browsers, word processors, spreadsheets,
database systems, games. ..

B Most users’ view of an operation system is defined by system
programs, not the actual system calls

Operating System Concepts — 9" Edition 2.25 Silberschatz, Galvin and Gagne ©2013
[=
(@
i System Programs (Cont.)

B File modification
@ Text editors to create and modify files

® Special commands to search contents of files or perform
transformations of the text

B Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

B Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems for
higher-level and machine language

B Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

@ Allow users to send messages to one another’ s screens, browse
web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 227

=

—

S System Programs (Cont.)

B Provide a convenient environment for program development and
execution

® Some of them are simply user interfaces to system calls; others
are considerably more complex

B File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

B Status information

® Some ask the system for info - date, time, amount of available
memory, disk space, number of users

@ Others provide detailed performance, logging, and debugging
information

® Typically, these programs format and print the output to the
terminal or other output devices

® Some systems implement a registry - used to store and retrieve
configuration information

Silberschatz, Galvin and Gagne ©2013

"
(@ oty
r System Programs (Cont.)

B Background Services
® Launch at boot time
» Some for system startup, then terminate
» Some from system boot to shutdown

® Provide facilities like disk checking, process scheduling, error
logging, printing

@ Run in user context not kernel context

® Known as services, subsystems, daemons

B Application programs
® Don't pertain to system
Run by users
Not typically considered part of OS
Launched by command line, mouse click, finger poke

Web browsers, word processors, spreadsheets, database
systems, games

P

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition 2.28

™ Operating System Design

(& 4
{1 ' -
& and Implementation
B Design and Implementation of OS not “solvable”, but some
approaches have proven to be successful
B Internal structure of different Operating Systems can vary widely
B Start by defining goals and specifications
B Affected by choice of hardware, type of system (batch, time sharing,
single user, multiuser, distributed, real time, or general purpose)
B User goals and System goals — much harder to specify
@ User goals — operating system should be convenient to use, easy
to learn, reliable, safe, and fast
@ System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient
Operating System Concepts — 9t" Edition 2.29 Silberschatz, Galvin and Gagne ©201£3
=
<5
O W .
& Implementation
B Much variation
@ Early OSes in assembly language
® Then system programming languages like Algol, PL/1
® Now most operating systems are written in C, C++
B Actually usually a mix of languages
® Lowest levels in assembly
® Main body in C
® Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts
B More high-level language easier to port to other hardware
® The code can be written faster, more compact, easier to debug
@ But slower and might require more storage
=
Operating System Concepts — 9" Edition 2.31 Silberschatz, Galvin and Gagne ©2013

P Operating System Design and
I Implementation (Cont.)

B Important principle to separate

Policy: What will be done?
Mechanism: Howto do it?

B Mechanisms determine how to do something, policies decide what will
be done

@ The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to be
changed later

B Specifying and designing OS is highly creative task of software
engineering

B Policy decisions are important for all resource allocations

~« L
Operating System Concepts — 90 Edition 2.30 Silberschatz, Galvin and Gagne ©2013

ELN

/.‘“m'\ .
‘-“}r’ Operating System Structure

B General-purpose OS is a very large program, must be carefully
engineered to function properly and be modified easily

B A common approach is to partition the task into small components,
or modules, rather than have one monolithic system.

@ Each of these modules should be a well-defined portion of the system,
with carefully defined inputs, outputs, and functions

B Various ways to structure one as follows

A Ry
Operating System Concepts — 9t Edition 2.32 Silberschatz, Galvin and Gagne ©2013

=

o
‘ﬂ.‘-’ ss,r/

Simple Structure

B Such Oses do not have well-defined
structure, usually started as small,
simple and limited systems

B MS-DOS - written to provide the

application program b

most functionality in the least space
@ Not carefully divided into modules

resident system program

@ Although it has some structure,
interfaces and levels of functionality
are not well separated —i.e., app
programs can access /O directly

@ Written for Intel 8088 with no dual
mode and no hardware protection

ROM BIOS device drivers

Operating System Concepts — 9t" Edition 233

) -

=

Silberschatz, Galvin and Gagne ©2013

Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands

system libraries

compilers and interpreters

system-call interface to the kernel
- signals terminal file system CPU scheduling
g) handling swapping block /O page replacement
2 character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory
L kernel interface to the hardware
terminal controllers device controllers memory controllers
terminals disks and tapes physical memory
Operating System Concepts — 9" Edition 2.35 Silberschatz, Galvin and Gagne ©201;

™
#-C{:/

UNIX

B UNIX —initially limited by hardware functionality, the original UNIX

operating system had limited structuring.

B The UNIX OS consists of two separable parts: the kernel and system
programs

The kernel is further separated into a series of interfaces and device
drivers, which have been expanded over the years.

In traditional UNIX, the kernel consists of everything below the system
-call interface and above the physical hardware

@ It provides the file system, CPU scheduling, memory management,
and other operating-system functions; an enormous amount of
functionality combined into one level. This monolithic structure
makes it difficult to implement and maintain

® A distinct performance advantage is that there is little overhead in
the system call interface or in communication with the kernel

Operating System Concepts — 90 Edition 2.34 Silberschatz, Galvin and Gagne ©2013

< Layered Approach

B One type of modular approaches

B The operating system is divided into a number of layers (levels), each
built on top of lower layers.

® The bottom layer (layer 0) is the hardware;

@ The highest (layer N) is the user interface

B The main advantage of a layered approach the simplicity of construction
and debugging. The layers are selected such that each uses functions
(operations) and services of only lower-level layers

B The major difficulty involves appropriately defining the various layers.
Also this tends to be less efficient as each layer adds overhead — Few
layers with more functionality in recent years.

v

Operating System Concepts — 9t Edition 2.36 Silberschatz, Galvin and Gagne ©2013

=
Py
A

Layered Approach (Cont.)

B An OS layer is an implementation
of an abstract object made up of
data and operations manipulating
those data

B Alayer M consists of data structure
and a set of routines that can be
involved by higher-level layers.
Layer M, in turn, can invoke
operations on lower-level layers

layer 0 \
hardware

B Information hiding: a layer does not
need to know how the lower-layer
operations are implemented, only
what these operations do.

Ve

A

Operating System Concepts — 9" Edition 2.37 Silberschatz, Galvin and Gagne ©2013

=
“%”” Microkernel System Structure (Cont.)

B Benefits:

@ Easier to extend a microkernel OS, as all new services are added to
user space without modification on the kernel

® When the kernel has to be modified, the changes are fewer, as the
kernel is much smaller

® Easier to port the operating system to new architectures (hardware)

® More reliable and reliable (less code is running in kernel mode), since
most services are running as user — not kernel processes. If a service
fails, the rest of the OS remains untouched

® Mac OS X kernel (also known as Darwin) is partly based on Mach
kernel

W Detriments:

@ Performance of microkernels can suffer due to increased system
-function overhead, user space to kernel space communication

@ Earlier Window NT had a layered microkernel, now more monolithic

Operating System Concepts — 9" Edition 2.39 Silberschatz, Galvin and Gagne ©2013

SN Y
ga .

™
P>

Microkernel System Structure

B The kernel became large and difficult to manage

B Removing all nonessential components from the kernel and

implementing them as system or user-level programs

M This results in a smaller kernel. Yet, there is little consensus

regarding which services should remain in the kernel and which
should be implemented in user space

@ Typically, microkernels provide minimal process and memory

management, in addition to a communication facility.

The main function of the microkernel is to provide communication

Mach, developed at CMU in mid-1980s, is an example of microkernel

between client program and various services also running in user space

B Communication is provided through message passing

Operating System Concepts — 9t Edition

2.38

A R
Silberschatz, Galvin and Gagne ©2013

,‘;:_
(o]
SO 4 =
2 Microkernel System Structure
Application File Device user
Program System Driver mode
A~ ~ A~ |
messages messages]
Interprocess oo CPU kernel
Communication managment scheduling mode
4 microkernel _
v hardware

Operating System Concepts — 9" Edition

S
W

A R
Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition

N EN
(& ';,r/

Modules

B Perhaps the best current methodology for OS design involves using loadable
kernel modules

W [t provides core services while other services are dynamically implemented as
the kernel is running

® Recompiling the kernel is required each time new features are added

® For example, the kernel has CPU scheduling and memory management algorithms,
and adds support for different file systems by way of loadable modules
B This resembles a layered system in that each kernel section has defined,

protected interface, but it is more flexible as any module can call any other
module (no higher or lower layer relationship)

B Itis also similar to the microkernel approach in that the primary module has
only core functions and knowledge of how to load and communicate with

other modules; but more efficient because modules do not need to invoke
message passing in order to communicate

B This type of design is common in modern implementation of UNIX, such as
Solaris, Linux, and Mac OS x, as well as Windows

W<
Operating System Concepts — 9t" Edition

A M
2.41 Silberschatz, Galvin and Gagne ©2013

o
;"‘,?I

Hybrid Systems

B In practice, very few operating systems adopt a single, strictly
defined structure. Instead they combine different structures,

resulting in hybrid systems that address performance, security,
usability needs

@®Both Linux and Solaris are monolithic, because having the OS in a single

address space provides very efficient performance. They are also modular
for dynamic loading of new functionality

eWindows largely monolithic (primarily performance reason), but retains
some behavior typical of microkernel systems, including providing support
for different subsystems (known as OS personalities) that run as user

-mode processes. Windows systems also provide support for dynamically
loadable kernel modules.

é S

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9" Edition

[
‘w X ‘f;/:/

Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel

miscellaneous
modules

loadable
system calls

STREAMS
modules

executable
formats

Operating System Concepts — 9t Edition

2.42

=
o
< ’».x,'—/

Mac OS X

B Apple Mac OS X uses a hybrid structure.
W ltis a layered system

B The top layers include Aqua user interface and a set of application
environments and services. Cocoa environment specifies an API for
the Objective-C language, used for writing Mac OS X applications

B Below is kernel environment, consisting of the Mach microkernel and
BSD Unix parts, plus I/O kit and dynamically loadable modules
(called kernel extensions)
® MACH microkernel provides memory management support for RPC, IPC

® BSD components provides a BSD command-line interface, support for

networking and file systems, and an implementation of POSIX APIs,
including Pthreads

Silberschatz, Galvin and Gagne ©2013

Silberschatz, Galvin and Gagne ©2013

A B
2.44

D
Y
S
2k

o Mac OS X Structure

hical interf:
graphical user interface Aqua

application environments and services

kernel environment

BSD
Mach
1/O kit kernel extensions
W
AW
Operating System Concepts — 9" Edition 2.45 Silberschatz, Galvin and Gagne ©2013

=
ﬁ—-v-'v»l

&r:»’ &/r 'd

Android

B Developed by Open Handset Alliance (led primarily by Google)
® Open-source

B Similar stack to iOS in that it is a layered stack of software

B Based on Linux kernel but modified
® Provides process, memory, device-driver management
® Adds power management

B Runtime environment includes core set of libraries and Dalvik virtual
machine

® Apps developed in Java (non-standard Java API, based on Android API),
run on Dalvik virtual machine

@ Dalvik optimized for mobile devices with limited memory and CPU
B Libraries include frameworks for web browser (webkit), database
(SQLite), and multimedia,

B The libc library is similar to standard C library, but much smaller,
designed for slower CPUs in mobile devices

P

Operating System Concepts — 9" Edition 2.47 Silberschatz, Galvin and Gagne ©2013

™
gfx::/

i0S

B Apple mobile OS for iPhone, iPad (close-sourced)

® Structured on Mac OS X, added functionality
pertinent to mobile devices

® Does not run OS X applications natively

» Also runs on different CPU architecture
(ARM vs. Intel)

® Cocoa Touch Objective-C API for developing
apps (touch screen features)

Cocoa Touch
Media Services
Core Services

® Media services layer for graphics, audio,
video Core OS

® Core services provides support for cloud
computing, databases

® Core OS represents the core operating
system, which is based on Mac OS X kernel
environment

Operating System Concepts — 90 Edition 2.46 Silberschatz, Galvin and Gagn’e ©2(;1;
(=
S H H
el Android Architecture

Application Framework

Libraries Android runtime
SQLite openGL Core Libraries
surface media Dalvik
manager framework . .
virtual machine
webkit libc

Operating System Concepts — 9" Edition 248

Silberschatz, Galvin and Gagne ©2013

== (=

=
o

x.af Virtual Machines

B The virtual machine creates the illusion of multiple processes, each
executing on its own processor with its own (virtual) memory

B Software emulation of an abstract machine
® Make it look like hardware that has features you want
® Programs from one hardware & OS on another one
B Programming simplicity

&

® Each process thinks it has all memory/CPU time
® Each process thinks it owns all devices
e Different devices appear to have same interface
B Fault Isolation
® Processes unable to directly impact other processes
® Bugs cannot crash whole machine
B Protection and Portability

@ Java virtual machine: Java interface safe and stable across many platforms

y ’\\‘-(, 3
Operating System Concepts — 9" Edition 2.49 Silberschatz, Galvin and Gagne ©2013
=
C x"‘"""l,
A/ H H
2 Virtual Machines (Cont)
processes
processes
processes processes
] programming/ I ﬂ
.~ interface kernel kernel kernel
VM1 VM2 VM3
kernel - -
virtual-machine
implementation
hardware TETTE
(a) (b)

(a) Nonvirtual machine (b) virtual machine

SN Y
ga .

Operating System Concepts — 9" Edition 2.51 Silberschatz, Galvin and Gagne ©2013

™
P>

Virtual Machines (Cont)

B Allows operating systems to run as applications within other OSes

B Emulation used when source CPU type different from target type

® Generally slowest method, as each machine-level instruction must
be translated into equivalent instruction on the target system

® For example, Apple moved from IBM PowerPC to Intel x86 CPU, it
included an emulation facility that allowed applications complied for
the IBM CPU to run on the Intel CPU

B Virtualization — OS running as guest OS within another OS (host)

® VMM or Virtual Machine Manager provides virtualization services. It
has more privileges than user processes, but fewer than the kernel
(more than the dual-mode). VMM runs the guest operating system,
manages their resource use, and protect each guest fom others

@ Consider VMware running multiple WinXP guests, each running

applications, in which Windows is the host OS, VMware application
is the VMM.

~« L
Operating System Concepts — 90 Edition 2.50 Silberschatz, Galvin and Gagne ©2013

™
(O

Virtual Machines (Cont)

B Use cases involve laptops and desktops running multiple OSes
for exploration or to run applications written for operating
systems other than the native host (machine)

® Apple laptop running Mac OS X host, Windows as a guest to allow
execution of Windows application

® Multiple operating systems can use virtualization to run all of those
operating systems on a single physical server for development,
testing, and debugging.

® Virtualization has become a common method of executing and
managing compute environments within data centers

P

Operating System Concepts — 9t Edition 2.52 Silberschatz, Galvin and Gagne ©2013

=

P) /-”7""”}8} - =
‘"“'}f” Virtual Machines (Cont): Layers of OS “%7” Nachos: Virtual OS Environment

B Useful for OS development

You will be working with Nachos

@ When OS crashes, restricted to one VM minstructional software allows to study and modify OS functions. It runs as a UNIX

@ Can aid testing programs on other OS process, while a real operating system runs on hardware
ENachos simulates the general low-level facilities of typical hardware, including
application application application application interrupts, virtual memory and interrupt-driven I/O
HTo test the concepts you learn about thread, multiprogramming, virtual memory, file
guest operating guest operating guest operating systems and networking
system system system
(free BSD) (Windows NT) (Windows XP) EMachos written in C++ and well organized, making it easier to understand the
virtual CPU virtual CPU virtual CPU operation of a typical operating system
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices DOCTOR FUN 6Dec 94
virtualization layer

|

host operating system
(Linux)
hardware
CPU [memory | 1/0 devices
“This is the planet where nachos rule."
A
Operating System Concepts — 9t Edition 253 Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 90 Edition 2.54 Silberschatz, Galvin and Gagne ©2013

End of Chapter 2

_;\:?J(;%W‘?“w

Operating System Concepts — 9" Edition Silberschatz, Galvin and Gagne ©2013

