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Review.2Operating System Concepts

Outline

� Monitor
� Deadlock and Banker Algorithm
� Paging and Segmentation
� Page Replacement Algorithms and Working-set Model
� File Allocation
� Disk Scheduling
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Monitors

� A high-level abstraction that provides a convenient and effective mechanism for 
process synchronization

� Abstract data type, internal variables only accessible by code within the procedure
� Only one process may be active within the monitor at a time
� But not powerful enough to model some synchronization schemes

monitor monitor-name
{

// shared variable declarations
procedure  P1  (…)  {  ….  }

procedure  Pn  (…)  {……}

Initialization  code  (…)  {  …  }
}

}
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Condition Variables

� condition x, y;

� Two operations on a condition variable:
z x.wait () – a process that invokes the operation is suspended until x.signal () 
z x.signal () – resumes one of processes (if any) that invoked x.wait ()

� If no x.wait () on the variable, then it has no effect on the variable
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Monitor with Condition Variables
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Deadlock Characterization
� Deadlock can arise if four conditions hold simultaneously

� Mutual exclusion

� only one process at a time can use a resource.

� Hold and wait

� a process holding at least one resource is waiting to 
acquire additional resources held by other processes.

� No preemption

� a resource can be released only voluntarily by the 
process holding it, after that process has completed 
its task.

� Circular wait

� there exists a set {P0, P1,  …,  Pn} of waiting processes 
such that P0 is waiting for a resource that is held by P1, 
P1 is waiting for a resource that is held by P2,  …,  Pn–1

is waiting for a resource that is held by Pn, and Pn is 
waiting for a resource that is held by P0.
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Resource-Allocation Graph

� A set of vertices V and a set of edges E.

� V is partitioned into two types:

z P = {P1, P2,  …,  Pn}, the set consisting of all the processes in the system.

z R = {R1, R2,  …,  Rm}, the set consisting of all resource types in the system

� Each resource type Ri has Wi instances.
� Each process utilizes a resource as follows: request, use, release
� Request edge – directed edge Pi o Rj
� Assignment edge – directed edge Rj o Pi
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Safe State

� When a process requests an available resource, system must 
decide if immediate allocation leaves the system in a safe state

� System is in safe state if there exists a safe sequence of all 
processes:
z Sequence <P1, P2,  …,  Pn> is safe if for each Pi, the resources that Pi 

can still request can be satisfied by currently available resources + 
resources held by all the Pj, with j<i
� If Pi resource needs are not immediately available, then Pi can wait until 

all Pj have finished
� When Pj is finished, Pi can obtain needed resources, execute, return 

allocated resources, and terminate
� When Pi terminates, Pi+1 can obtain its needed resources, and so on
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Banker’s  Algorithm

� Each resource can have multiple instances.
� Each process must a priori claim maximum use.
� When a process requests a resource it may have to wait.  
� When a process gets all its resources it must return them in 

a finite amount of time.
Let n = number of processes, and m = number of resources types. 

• Available: Vector of length m. If available [j] = k, there are k instances of resource 
type Rj available.

• Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at most k 
instances of resource type Rj.

• Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is currently allocated k
instances of Rj.

• Need:  n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to 
complete its task

Need [i,j] = Max[i,j] – Allocation [i,j].
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Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.  
Initialize:

Work = Available
Finish [i] = false for i - 1,3,  …,  n.

2. Find and i such that both: 
(a) Finish [i] = false
(b) Needi d Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state
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Base and Limit Registers

� Two special registers, 
base and limit are used 
to prevent user from 
straying outside the 
designated area

� During context switch, OS 
loads new base and limit 
register from PCB

� User is NOT allowed to 
change the base and limit 
registers (privileged 
instructions)
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Contiguous Memory Allocation
� Each process is contained in a single contiguous section of 

memory
z Degree of multiprogramming limited by number of partitions
z Variable-partition sizes  for  efficiency  (sized  to  a  given  process’  needs)
z Hole – block of available memory; holes of various size are scattered 

throughout memory
z Operating system maintains information about:

a) allocated partitions    b) free partitions (hole)
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Paging

� Physical address space of a process can be noncontiguous
z Divide physical memory into fixed-sized blocks called frames,
z Divide logical memory into blocks of same size called pages.
z Keep track of all free frames

� Set up a page table to translate logical to physical addresses
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Address Translation

� Address generated by CPU is divided into:
z Page number (p) – used as an index into a page table which contains base 

address of each page in physical memory
z Page offset (d) – combined with base address to define the physical 

memory address that is sent to the memory unit
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Page Table Implementation
� Implementation of Page Table

z Page table is kept in main memory

z Page-table base register (PTBR) points to the page table

z Page-table length register (PRLR) indicates size of the page 
table

z In this scheme every data/instruction access requires two 
memory accesses. 
� One for the page table and one for the data/instruction
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TLB
� The two memory access problem can be solved by using TLB 

(translation look-aside buffer)

z a special, small, fast-lookup hardware cache

z each entry in the TLB consists of a key (or tag) and a value

z page number is presented to the TLB, if found, its frame number 
is immediately available to access memory

z fast but expensive
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Paging Hardware With TLB

Can be very large, 
e.g. 1M entries
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TLB miss and Hit ratio
� TLB miss: 

z If the page number is not in the TLB, a memory reference to the 
page table must be made

� Hit ratio: 

z percentage of times that a page number is found in the TLB.

� For example: 
z Assume TLB search takes 20ns; memory access takes 100ns

z TLB hit Æ 1 memory access; TLB miss Æ 2 memory accesses
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Effective Access Time (EAT)

� If Hit ratio = 80%   

z EAT = (20 + 100) * 0.8 + (20 + 200) * 0.2 = 140ns

� If Hit ratio = 98%  

z EAT = (20 + 100) * 0.98 + (20 + 200) * 0.02 = 122ns
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Segmentation
� Memory-management scheme 

that supports user view of 
memory 

� A program is a collection of 
segments of different sizes 

� A segment is a logical unit
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Address Translation
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Example of Segmentation

Logical view: 
multiple separate 

segments

Each segment is 
allocated with a 

contiguous memory

External 
fragmentation

Review.23Operating System Concepts

Motivation of virtual memory
� Should an entire process be in memory before it can execute?

z In fact, real programs show that, in many cases, the entire 
program is not needed

z Even in those cases where the entire program is needed, it may 
not all be needed at the same time

z More programs could run concurrently, increasing CPU 
utilization and throughput

z Less I/O would be needed to load or swap each user program 
into memory, so each user program would run faster

z Allow processes to share files easily and to implement shared 
memory
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Page Replacement

� If there is no free frame
� Page replacement – find some page in memory, but not really in use, 

swap it out
z Replacement algorithm
z Performance – want an algorithm which will result in minimum 

number of page faults
z Same page may be brought into and out of memory several 

times
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Page Replacement
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FIFO Page Replacement
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Algorithms for approximating 
optimal page replacement

� LRU (Least Recently Used) algorithm

z Use the recent past as an approximation of the near future

�Replace the page that has not been used for the longest 
period of time

z Considered to be good, but how to implement

� Few computer systems provide sufficient hardware support 
for true LRU

� LRU-approximation: Reference bits, Second chance
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� Optimal page replacement (9 page faults)

� LRU page replacement (12 page faults)
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Working-Set Model

� Working-Set model is based on the locality
� ' { working-set window { a fixed number of page references 

Example:  10,000 instructions
� WSSi (working set of Process Pi) = total number of pages referenced 

in the most recent ' (varies in time)
z if ' too small will not encompass entire locality
z if ' too large will encompass several localities
z if ' = f � will encompass entire program

� D = 6 WSSi { total demand for frames (by all processes)
z if D > m � Thrashing (m is the available frames)
z Policy if D > m, then suspend one of the processes; the process pages are 

swapped out, and its frames are re-allocated to other processes. The suspended 
process can be re-started later
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A Typical File-system Organization
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Allocation Methods
� An allocation method refers to how disk blocks are allocated 

for files – Objectives:

z Maximize sequential performance
z Easy random access to file
z Easy management of file (growth, truncation, and etc)

� Contiguous allocation
� Linked allocation
� Indexed allocation

Review.32Operating System Concepts

Combined Scheme:  UNIX (4K bytes per block)

� Multi-level index file, key idea:
� Efficient for small files, still allow large 

files
� File header format are: 

� First 10 pointers are to data blocks
� Pointer  11  points  to  “indirect  block”  

containing 256 block pointers
� Pointer  12  points  to  “doubly  indirect  block”  

containing 256 indirect block pointers for 
total of 64K blocks

� Pointer 13 points to a triply indirect block 
(16M blocks)

� Pointers get filled in dynamically
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Free-Space Management
� Bit vector  (n blocks)

…

0 1 2 n-1

bit[i] = 1 � block[i] free
0 � block[i] occupied

� Linked list (free list) (previous block contains a pointer to the next free 
block)
� Cannot get contiguous space easily
� No waste of space

� Grouping (stores the addresses of n free blocks in the first free 
block)

� Counting
� Several contiguous blocks may be allocated and freed 

simultaneously <first free block, number of free contiguous 
blocks>
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Disk Scheduling
� The operating system is responsible for using hardware 

efficiently — for the disk drives, this means having a fast 
access time and disk bandwidth.

� Access time has two major components
z Seek time is the time for the disk are to move the heads to the cylinder 

(tracks) containing the desired sector.
z Rotational latency is the additional time waiting for the disk to rotate the 

desired sector to the disk head.

� Minimize seek time
� Seek time | seek distance
� The disk bandwidth is the total number of bytes transferred, 

divided by the total time between the first request for service 
and the completion of the last transfer.
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Disk Scheduling 

� When a process needs I/O to or from a disk, it issues a system call 
to the OS containing the following pieces of information
z Whether the operation is input or output
z What the disk address for the transfer is
z What memory address for the transfer is
z What the number of sectors to be transferred is

� Under multiprogramming system with many processes, the request 
may be placed in a disk queue waiting unless the desired disk drive 
and the controller are available

� The question is, when one request is completed, the OS needs to 
choose which pending requests to service next? How does the OS 
make this choice? 

� We need disk scheduling algorithms
z FCFS, SSTF, SCAN, LOOK, C-SCAN, C-LOOK


