
Fall 2015 - COMP3511
Review

Review.2Operating System Concepts

Outline

� Monitor
� Deadlock and Banker Algorithm
� Paging and Segmentation
� Page Replacement Algorithms and Working-set Model
� File Allocation
� Disk Scheduling

Review.3Operating System Concepts

Monitors

� A high-level abstraction that provides a convenient and effective mechanism for
process synchronization

� Abstract data type, internal variables only accessible by code within the procedure
� Only one process may be active within the monitor at a time
� But not powerful enough to model some synchronization schemes

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}

Review.4Operating System Concepts

Condition Variables

� condition x, y;

� Two operations on a condition variable:
z x.wait () – a process that invokes the operation is suspended until x.signal ()
z x.signal () – resumes one of processes (if any) that invoked x.wait ()

� If no x.wait () on the variable, then it has no effect on the variable

Review.5Operating System Concepts

Monitor with Condition Variables

Review.6Operating System Concepts

Deadlock Characterization
� Deadlock can arise if four conditions hold simultaneously

� Mutual exclusion

� only one process at a time can use a resource.

� Hold and wait

� a process holding at least one resource is waiting to
acquire additional resources held by other processes.

� No preemption

� a resource can be released only voluntarily by the
process holding it, after that process has completed
its task.

� Circular wait

� there exists a set {P0, P1, …, Pn} of waiting processes
such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by P2, …, Pn–1

is waiting for a resource that is held by Pn, and Pn is
waiting for a resource that is held by P0.

Review.7Operating System Concepts

Resource-Allocation Graph

� A set of vertices V and a set of edges E.

� V is partitioned into two types:

z P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

z R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

� Each resource type Ri has Wi instances.
� Each process utilizes a resource as follows: request, use, release
� Request edge – directed edge Pi o Rj
� Assignment edge – directed edge Rj o Pi

Review.8Operating System Concepts

Safe State

� When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state

� System is in safe state if there exists a safe sequence of all
processes:
z Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi

can still request can be satisfied by currently available resources +
resources held by all the Pj, with j<i
� If Pi resource needs are not immediately available, then Pi can wait until

all Pj have finished
� When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
� When Pi terminates, Pi+1 can obtain its needed resources, and so on

Review.9Operating System Concepts

Banker’s Algorithm

� Each resource can have multiple instances.
� Each process must a priori claim maximum use.
� When a process requests a resource it may have to wait.
� When a process gets all its resources it must return them in

a finite amount of time.
Let n = number of processes, and m = number of resources types.

• Available: Vector of length m. If available [j] = k, there are k instances of resource
type Rj available.

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k
instances of resource type Rj.

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k
instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to
complete its task

Need [i,j] = Max[i,j] – Allocation [i,j].

Review.10Operating System Concepts

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:
(a) Finish [i] = false
(b) Needi d Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Review.11Operating System Concepts

Base and Limit Registers

� Two special registers,
base and limit are used
to prevent user from
straying outside the
designated area

� During context switch, OS
loads new base and limit
register from PCB

� User is NOT allowed to
change the base and limit
registers (privileged
instructions)

Review.12Operating System Concepts

Contiguous Memory Allocation
� Each process is contained in a single contiguous section of

memory
z Degree of multiprogramming limited by number of partitions
z Variable-partition sizes for efficiency (sized to a given process’ needs)
z Hole – block of available memory; holes of various size are scattered

throughout memory
z Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10

Review.13Operating System Concepts

Paging

� Physical address space of a process can be noncontiguous
z Divide physical memory into fixed-sized blocks called frames,
z Divide logical memory into blocks of same size called pages.
z Keep track of all free frames

� Set up a page table to translate logical to physical addresses

Review.14Operating System Concepts

Address Translation

� Address generated by CPU is divided into:
z Page number (p) – used as an index into a page table which contains base

address of each page in physical memory
z Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit

Review.15Operating System Concepts

Page Table Implementation
� Implementation of Page Table

z Page table is kept in main memory

z Page-table base register (PTBR) points to the page table

z Page-table length register (PRLR) indicates size of the page
table

z In this scheme every data/instruction access requires two
memory accesses.
� One for the page table and one for the data/instruction

Review.16Operating System Concepts

TLB
� The two memory access problem can be solved by using TLB

(translation look-aside buffer)

z a special, small, fast-lookup hardware cache

z each entry in the TLB consists of a key (or tag) and a value

z page number is presented to the TLB, if found, its frame number
is immediately available to access memory

z fast but expensive

Review.17Operating System Concepts

Paging Hardware With TLB

Can be very large,
e.g. 1M entries

Review.18Operating System Concepts

TLB miss and Hit ratio
� TLB miss:

z If the page number is not in the TLB, a memory reference to the
page table must be made

� Hit ratio:

z percentage of times that a page number is found in the TLB.

� For example:
z Assume TLB search takes 20ns; memory access takes 100ns

z TLB hit Æ 1 memory access; TLB miss Æ 2 memory accesses

Review.19Operating System Concepts

Effective Access Time (EAT)

� If Hit ratio = 80%

z EAT = (20 + 100) * 0.8 + (20 + 200) * 0.2 = 140ns

� If Hit ratio = 98%

z EAT = (20 + 100) * 0.98 + (20 + 200) * 0.02 = 122ns

Review.20Operating System Concepts

Segmentation
� Memory-management scheme

that supports user view of
memory

� A program is a collection of
segments of different sizes

� A segment is a logical unit

1

3

2

4

user space

1

4

2

3

physical memory space

Review.21Operating System Concepts

Address Translation

Review.22Operating System Concepts

Example of Segmentation

Logical view:
multiple separate

segments

Each segment is
allocated with a

contiguous memory

External
fragmentation

Review.23Operating System Concepts

Motivation of virtual memory
� Should an entire process be in memory before it can execute?

z In fact, real programs show that, in many cases, the entire
program is not needed

z Even in those cases where the entire program is needed, it may
not all be needed at the same time

z More programs could run concurrently, increasing CPU
utilization and throughput

z Less I/O would be needed to load or swap each user program
into memory, so each user program would run faster

z Allow processes to share files easily and to implement shared
memory

Review.24Operating System Concepts

Page Replacement

� If there is no free frame
� Page replacement – find some page in memory, but not really in use,

swap it out
z Replacement algorithm
z Performance – want an algorithm which will result in minimum

number of page faults
z Same page may be brought into and out of memory several

times

Review.25Operating System Concepts

Page Replacement

Review.26Operating System Concepts

FIFO Page Replacement

Review.27Operating System Concepts

Algorithms for approximating
optimal page replacement

� LRU (Least Recently Used) algorithm

z Use the recent past as an approximation of the near future

�Replace the page that has not been used for the longest
period of time

z Considered to be good, but how to implement

� Few computer systems provide sufficient hardware support
for true LRU

� LRU-approximation: Reference bits, Second chance

Review.28Operating System Concepts

� Optimal page replacement (9 page faults)

� LRU page replacement (12 page faults)

Review.29Operating System Concepts

Working-Set Model

� Working-Set model is based on the locality
� ' { working-set window { a fixed number of page references

Example: 10,000 instructions
� WSSi (working set of Process Pi) = total number of pages referenced

in the most recent ' (varies in time)
z if ' too small will not encompass entire locality
z if ' too large will encompass several localities
z if ' = f � will encompass entire program

� D = 6 WSSi { total demand for frames (by all processes)
z if D > m � Thrashing (m is the available frames)
z Policy if D > m, then suspend one of the processes; the process pages are

swapped out, and its frames are re-allocated to other processes. The suspended
process can be re-started later

Review.30Operating System Concepts

A Typical File-system Organization

Review.31Operating System Concepts

Allocation Methods
� An allocation method refers to how disk blocks are allocated

for files – Objectives:

z Maximize sequential performance
z Easy random access to file
z Easy management of file (growth, truncation, and etc)

� Contiguous allocation
� Linked allocation
� Indexed allocation

Review.32Operating System Concepts

Combined Scheme: UNIX (4K bytes per block)

� Multi-level index file, key idea:
� Efficient for small files, still allow large

files
� File header format are:

� First 10 pointers are to data blocks
� Pointer 11 points to “indirect block”

containing 256 block pointers
� Pointer 12 points to “doubly indirect block”

containing 256 indirect block pointers for
total of 64K blocks

� Pointer 13 points to a triply indirect block
(16M blocks)

� Pointers get filled in dynamically

Review.33Operating System Concepts

Free-Space Management
� Bit vector (n blocks)

…

0 1 2 n-1

bit[i] = 1 � block[i] free
0 � block[i] occupied

� Linked list (free list) (previous block contains a pointer to the next free
block)
� Cannot get contiguous space easily
� No waste of space

� Grouping (stores the addresses of n free blocks in the first free
block)

� Counting
� Several contiguous blocks may be allocated and freed

simultaneously <first free block, number of free contiguous
blocks>

Review.34Operating System Concepts

Disk Scheduling
� The operating system is responsible for using hardware

efficiently — for the disk drives, this means having a fast
access time and disk bandwidth.

� Access time has two major components
z Seek time is the time for the disk are to move the heads to the cylinder

(tracks) containing the desired sector.
z Rotational latency is the additional time waiting for the disk to rotate the

desired sector to the disk head.

� Minimize seek time
� Seek time | seek distance
� The disk bandwidth is the total number of bytes transferred,

divided by the total time between the first request for service
and the completion of the last transfer.

Review.35Operating System Concepts

Disk Scheduling

� When a process needs I/O to or from a disk, it issues a system call
to the OS containing the following pieces of information
z Whether the operation is input or output
z What the disk address for the transfer is
z What memory address for the transfer is
z What the number of sectors to be transferred is

� Under multiprogramming system with many processes, the request
may be placed in a disk queue waiting unless the desired disk drive
and the controller are available

� The question is, when one request is completed, the OS needs to
choose which pending requests to service next? How does the OS
make this choice?

� We need disk scheduling algorithms
z FCFS, SSTF, SCAN, LOOK, C-SCAN, C-LOOK

