
Fall 2015 COMP 3511

Operating Systems

Lab #7

Outline

 Review and examples on virtual memory

 Motivation of Virtual Memory

 Demand Paging

 Page Replacement

Q. 1

 What is required to support dynamic memory

allocation in the following schemes:

 contiguous-memory allocation

 paging

 segmentation

Q. 1

 contiguous-memory allocation:

 might require relocation of the entire program

 since there is not enough space for the program to

grow its allocated memory space

 paging:

 incremental allocation of new pages is possible in this

scheme without requiring relocation of the program’s

address space

Q. 1

 segmentation:

 might require relocation of the segment that needs to

be extended

 since there is not enough space for the segment to

grow its allocated memory space

Q. 2

 Briefly explain the concept of logical address and

physical address

 Logical address

 Generated by the CPU

 Also referred to as virtual address, i.e., the address

always starts from zero

 Physical address

 Address seen by the memory management unit (MMU)

which maps logical address to physical address

 The user program deals with logical addresses; it

never sees the real physical addresses

Q. 3

 Suppose a computer has an 8-bit address space, i.e.,

each logical address is 8-bit long. Page size is 32

bytes.

(a) How many entries does the page table contain?

(b) Part of the page table is shown here:

Page Number Frame Number

0 5

1 1

2 3

3 2

4 7

Q. 3

 What are the physical addresses in decimal for the following
logical addresses in binary?

i. 00111111

ii. 11000000

iii. 10101010

iv. 01010101

Q. 3

 Suppose a computer has an 8-bit address space, i.e.,

each logical address is 8-bit long. Page size is 32

bytes.

(a) How many entries does the page table contain?

Answer:

a) (a) 3 bits are left for the page number in logical
address, so there are total 8 entries in the page table.

b) (b)

i. 1 x 32 + 31 = 63

ii. No translation can be done

iii. No translation can be done

iv. 3 x 32 + 21 = 117

Q. 4

 Consider a paging system with the page table stored

in memory

 If a memory reference takes 200 nanoseconds, how

long does a paged memory reference take?

Q. 4

 400 nanoseconds:

 200 nanoseconds to access the page table

 200 nanoseconds to access the word in memory

Q. 4

 Assume that finding a page-table entry in the

associative registers takes zero time, if the entry is

there

 If we add associative registers, and 75% of all page-

table references are found in the associative registers

 what is the effective memory reference time?

 Effective access time

= 0.75 ×(200 nanoseconds) + 0.25 ×(400 nanoseconds)

= 250 nanoseconds.

Q. 4

Q. 5

 Compare the memory organization schemes of

contiguous memory allocation, pure segmentation,

and pure paging with respect to the following issues

 External fragmentation

 Internal fragmentation

 Ability to share code across processes

Q. 5

 The contiguous memory allocation scheme suffers

from external fragmentation

 Address spaces are allocated contiguously and holes

develop as old processes die and new processes are

initiated

 It also does not allow processes to share code

 Process’s memory space is not broken into

noncontiguous fine-grained segments

Q. 5

 Pure segmentation also suffers from external

fragmentation

 A segment of a process is laid out contiguously in

physical memory and fragmentation would occur as

segments of dead processes are replaced by

segments of new processes

 It enables processes to share code

 For instance, two different processes could share a

code segment but have distinct data segments

Q. 5

 Pure paging does not suffer from external

fragmentation, but instead suffers from internal

fragmentation

 Processes are allocated in page granularity and if a

page is not completely utilized, it results in internal

fragmentation and a corresponding wastage of space

 Paging also enables processes to share code at the

granularity of pages

Motivation of virtual memory

 Should an entire process be in memory before it can

execute?

 In fact, real programs show us that, in many cases, the

entire program is not needed

 e.g., figure in the next slide

 Even in those cases where the entire program is

needed, it may not all be needed at the same time

Since these errors seldom,

if ever, occur in practice,

this code is almost never

executed.

Arrays, lists, and tables

are often allocated more

memory than actual need,

e.g., maybe only 10×10

elements are actually

used.

A Program

Initialization

…
Array M[100][100]

…

…
Code to handle

unusual error

conditions

…

Motivation of virtual memory

 Virtual memory benefits both the system and the user

 Logical address space can be much larger than

physical address space

 A program would no longer be constrained by the

amount of available physical memory

Motivation of virtual memory

 Cont.

 More programs could run concurrently, increasing CPU

utilization and throughput

 Less I/O would be needed to load or swap each user

program into memory, so each user program would run

faster

 Allow processes to share files easily and to implement

shared memory

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed reference to it

 Invalid reference abort

 Not-in-memory bring to memory

Steps in Handling a Page Fault

 If there is a reference to a page, first reference to that page will

trap to operating system: page fault

An example of demand-paged memory

 Assume we have a demand-paged memory

 The page table is held in registers

 It takes 8 milliseconds to service a page fault if an

empty page is available or the replaced page is not

modified

 It takes 20 milliseconds if the replaced page is modified

 Memory access time is 100 nanoseconds

An example of demand-paged memory

 Assume that the page to be replaced is modified 70

percent of the time.

 What is the maximum acceptable page-fault rate for

an effective access time of no more than 200

nanoseconds ?

An example of demand-paged memory

0.2μsec = (1 − P) ×0.1μsec + (0.3P) ×8 millisec

+ (0.7P) ×20 millisec

0.1 = −0.1P + 2400 P + 14000 P

0.1 ≈ 16,400 P

P ≈ 0.000006

Hardware support for demand paging

 For every memory access operation, the page table

needs to be consulted:

 check whether the corresponding page is resident or

not

 check whether the program has read or write privileges

for accessing the page.

Hardware support for demand paging

 These checks would have to be performed in

hardware.

 For example, a TLB could serve as a cache and

improve the performance of the lookup operation.

Page Replacement

 If there is no free frame

 Page replacement – find some page in memory, but

not really in use, swap it out

 Replacement algorithm

 performance – want an algorithm which will result in

minimum number of page faults

 Same page may be brought into and out of memory several

times

Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame inside the memory:

- If there is a free frame, use it

- If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update

the page and frame tables.

4. Restart the process

Page Replacement

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

more frames

more page faults

FIFO Page Replacement

Algorithms for approximating optimal

page replacement

 LRU (Least Recently Used) algorithm

 Use the recent past as an approximation of the near future

 Replace the page that has not been used for the longest
period of time

 Considered to be good, but how to implement

 Few computer systems provide sufficient hardware support
for true LRU

 LRU-approximation: Reference bits, Second chance

 Optimal page replacement (9 page faults)

 LRU page replacement (12 page faults)

LRU Approximation Algorithms

 Reference bit
 Each page is associate a reference bit, initially = 0.

 When page is referenced, the reference bit set to 1.

 We can determine which pages have been used or not
used by examining the reference bits and replace the
page whose reference bit is 0 (if one exists).

 However, we do not know the order of use.

 Second chance
 When a page is selected, check the reference bit.

 If the value is 0, this page is replaced.

 If the value is 1, set the bit to 0, then move on to select
another page (FIFO). This page gets a second chance.

Algorithms for approximating optimal

page replacement

 Keep a counter of the number of references that have
been made to each page

 LFU (Least Frequently Used) algorithm
 an actively used page should have a large reference count

 replaces page with smallest count

 MFU (Most Frequently Used) algorithm
 the page with the smallest count was probably just brought

in and has yet to be used

 The implementation of these algorithms is expensive, and
they do not approximate OPT replacement well

An example of page-replacement

algorithm

 (a) Under which situations, the MFU generates fewer

page faults than the LRU ? Please give an example.

 (b) Under what circumstance does the opposite

holds ?

MFU: most frequently used page-

replacement algorithm

LRU: least recently used page

replacement algorithm

VS.

An example of page-replacement

algorithm

 (a) Consider the sequence in a system that holds four

pages in memory: 1 2 3 4 4 4 5 1

 the MFU evicts page 4 while fetching page 5

 the LRU evicts page 1 while fetching page 5, then

another page fault for fetching page 1 again

 (b) For the sequence “1 2 3 4 4 4 5 4,” the LRU

algorithm makes the right decision

Example 1

 A certain computer with

 virtual-memory space of 232 bytes

 218 bytes of physical memory

 The virtual memory is implemented by paging, and the
page size is 1024 bytes

 A user process generates the virtual address
11123987.

Example 1

 How the system establishes the corresponding

physical location ?

 The virtual address in binary form is

0001 0001 0001 0010 0011 1001 1000 0111

displacement in the page table,

since the page table size is 222

displacement into the page,

since the page size is 210

Example 2

 Consider the following sequence of memory

accesses in a system that can hold four pages in

memory: 1 1 2 3 4 5 1

 Which of the following page replacement algorithms

generates fewer page faults?

 a) LRU: least recently used page replacement

 b) LFU: least frequently used page replacement

Example 2

 memory accesses: 1 1 2 3 4 5 1

 four pages in memory

 The LRU evicts page 1 while fetching page 5

 The LFU evicts a page other than 1 while fetching

page 5

 No page fault when page 1 is accessed again

 fewer page faults

Example 3

 Discuss a situation under which the LRU generates

fewer page faults than the LFU.

Example 3

 memory accesses: 1 1 2 3 4 3 4 5 2

 four pages in memory

 The LFU evicts page 2 while fetching page 5

 The LRU evicts page 1 while fetching page 5

 No page fault when page 2 is accessed again

 fewer page faults

Q. 1

 Consider a system that allocates pages of different

sizes rather than fixed_sized ones to its processes.

 What are the advantages of such a paging scheme?

 What modifications did to the virtual memory system

can provide this functionality?

46

Q. 1

What are the advantages of such a paging scheme?

 The large program could have a large code segment

or use large sized arrays as data.

 These portions could be allocated to larger pages,

thereby decreasing the memory overheads

associated with a fixed_sized page table.

47

Q. 1

What modifications are required in the virtual memory system

that can provide this functionality?

 The virtual memory system would then

 have to maintain multiple free lists of pages for the different

sizes.

 should also need to have more complex code for address

translation to take into account different page sizes.

48

Q. 2

 Give the definition to each of the following terms:

a) Optimal replacement

b) LRU replacement

c) Clock (second-chance) replacement

d) FIFO replacement

49

Q.2

 Optimal: Replace the page that will not be used for the longest

period of time by making use of future knowledge.

 Least recently used (LRU) algorithm : use the recent past as an

approximation of the near future, then we can replace the page

that has not been referred for the longest period of time.

 Clock(Second chance) algorithm: A page’s reference bit is

inspected when selecting the page. The page is replaced if the

value is 0; but if the reference bit is 1, it is set to 0. Because a

circular list is used so that the page gets a second chance to be

replaced and we move on to select the next FIFO page. When a

page gets a second chance, its reference bit is cleared, and its

arrival time is reset to the current time.

 FIFO: Each page is associated with a time when arrived, the

algorithm replaces the oldest page.
50

Q. 3a Page Replacement Algorithm

 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

 How many page faults would occur for the following

replacement algorithms, assuming one, two, three,

four, five, six, or seven frames? Remember all frames

are initially empty, so your first unique pages will all

cost one fault each.

 LRU replacement

 FIFO replacement

 Optimal replacement

51

Q. 3a (LRU)

 LRU (1-frame): 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3,

6. Total 20 page faults occurred.

 LRU(2-frame), total 18 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 3 3 2 2 5 5 2 2 2 7 7 3 3 1 3 3

2 2 4 4 1 1 6 6 1 3 3 6 6 2 2 2 6

 LRU (3-frame), total 15 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 4 4 5 5 5 1 1 7 7 2 2 2

2 2 2 2 2 6 6 6 3 3 3 3 3 3

3 3 1 1 1 2 2 2 2 6 6 1 6

52

Q. 3a LRU

 LRU(4-frame): total 10 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 1 1 6 6

2 2 2 2 2 2 2 2 2

3 3 5 5 3 3 3 3

4 4 6 6 7 7 1

 LRU(5-frame): total 8 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 6 6 6

4 4 4 3 3

5 5 5 7
53

Q. 3a LRU

 LRU(6-frame): total 7 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 4 7

5 5 5

6 6

 LRU(7-frame): total 7 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 4 4

5 5 5

6 6

7

54

Q. 3a (FIFO)

 FIFO(1-frame): 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1,

2, 3, 6. Total 20 page faults occurred.

 FIFO(2-frame): total 18 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 3 3 2 2 5 5 2 2 3 3 6 6 2 2 3 3

2 2 4 4 1 1 6 6 1 1 7 7 3 3 1 1 6

 FIFO(3-frame): total 16 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 4 4 4 6 6 6 3 3 3 2 2 2 6

2 2 2 1 1 1 2 2 2 2 6 6 6 3 3

3 3 3 5 5 5 1 1 7 7 7 1 1 1

55

Q. 3a (FIFO)

 FIFO(4-frame): total 14 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 5 5 5 5 3 3 3 3 1 1

2 2 2 2 6 6 6 6 7 7 7 7 3

3 3 3 3 2 2 2 2 6 6 6 6

4 4 4 4 1 1 1 1 2 2 2

 FIFO(5-frame): total10 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 6 6 6 6 6

2 2 2 2 2 1 1 1 1

3 3 3 3 3 2 2 2

4 4 4 4 4 3 3

5 5 5 5 5 7
56

Q. 3a FIFO

 FIFO(6-frame): total10 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 7 7 7 7

2 2 2 2 2 2 1 1 1

3 3 3 3 3 3 2 2

4 4 4 4 4 4 3

5 5 5 5 5 5

6 6 6 6 6

 FIFO(7-frame): total 7 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 4 4

5 5 5

6 6

7

57

Q. 3a (Optimal)

 Optimal(1-frame): 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2,

3, 6. Total 20 page faults occurred.

 Optimal(2-frame): total 15 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 3 4 1 5 6 1 3 3 3 3 1 1 6

2 2 2 2 2 2 2 2 7 6 2 2 3 3

 Optimal(3-frame): total 11 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 3 3 3 3 6

2 2 2 2 2 2 7 2 2 2

3 4 5 6 6 6 6 1 1

58

Q. 3a (Optimal)

 Optimal(4-frame): total 8 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 7 1

2 2 2 2 2 2 2

3 3 3 3 3 3

4 5 6 6 6

 Optimal(5-frame): total 7 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 6 6

5 5 7
59

Q. 3a (Optimal)

 Optimal(6-frame): total 7 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 4 7

5 5 5

6 6

 Optimal(7-frame): total 7 page faults occurred.

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

4 4 4 4

5 5 5

6 6

7
60

Q. 3a Page Fault Variation for LRU, FIFO,

Optimal based on number of Frames

Number of

Frames

LRU FIFO Optimal

1 20 20 20

2 18 18 15

3 15 16 11

4 10 14 8

5 8 10 7

6 7 10 7

7 7 7 7

61

