
Fall 2015 COMP 3511

Operating Systems

Lab 06

Outline

 Monitor

 Deadlocks

 Logical vs. Physical Address Space

 Segmentation

 Example of segmentation scheme

 Paging

 Example of paging scheme

 Paging-Segmentation Combination

Monitors

 Motivation

Use locks for mutual exclusion and condition variables for

scheduling constraints

Definition

 A high-level abstraction that provides a convenient and effective

mechanism for process synchronization

 A lock and zero or more condition variables for managing

concurrent access to shared data inside a monitor

 Only one process may be active within the monitor at a time

Monitors

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….)

{ … }

…

}

 Some languages like Java provide this natively

 Most commercial OS use locks and condition variables

Monitors

 Lock: the lock provides mutual exclusion to shared data

 Always acquire before accessing shared data structure

 Always release after finishing with shared data

 Lock initially free

 Condition variable: a queue of threads waiting for something inside a
critical section

 Key idea: make it possible to go to sleep inside critical section by atomically
releasing lock at time it goes to sleep

 Contrast to semaphores: Cant wait on a semaphore inside critical section

 Condition variables x, y;

 Two operations on a condition variable:

 x.wait () – a process that invokes the operation is suspended.

 x.signal () – resumes one of processes (if any) that invoked x.wait ()

Difference between semaphore and

condition

Semaphore Condition

counting don't count

wait: may be pass immediately (it may
decrement the semaphore value
without wait)

wait: alway wait (suspend the process)

signal: increase semaphore value, may
wake up or may not wake up another
process

signal: if there exists a process waiting,
wake up. otherwise, nothing happens.

Monitor Implementation Using

Semaphores

 Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

 Each procedure F will be replaced by

wait(mutex);
…

body of F;

…
if (next_count > 0)

signal(next)
else

signal(mutex);

 Mutual exclusion within a monitor is ensured.

Monitor Implementation

 For each condition variable x, we
have:

semaphore x_sem; // (initially = 0)

int x-count = 0;

 The operation x.wait can be
implemented as:

x-count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x-count--;

 The operation x.signal can be
implemented as:

if (x-count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

The Deadlock Problem

 A set of blocked processes each holding resource(s) while

waiting to acquire more resource(s) held by another

process in the set.

 Example 1

 A system has 2 tape drives.

 P1 and P2 each hold one tape drive and each needs another one.

 Example 2

 semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

Deadlock Characterization

 If Deadlock occurs, four conditions must hold simultaneously

 Mutual exclusion

 only one process at a time can use a resource.

 Hold and wait

 a process holding at least one resource is waiting to acquire

additional resources held by other processes.

 No preemption

 a resource can be released only voluntarily by the process

holding it, after that process has completed its task.

 Circular wait

 there exists a set {P0, P1, …, Pn} of waiting processes such that

P0 is waiting for a resource that is held by P1, P1 is waiting for a

resource that is held by P2, …, Pn–1 is waiting for a resource that

is held by Pn, and Pn is waiting for a resource that is held by P0.

Resource-Allocation Graph

 A set of vertices V and a set of edges E.

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the processes in the
system.

 R = {R1, R2, …, Rm}, the set consisting of all resource types in
the system

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows: request, use,
release

 Request edge – directed edge Pi Rj

 Assignment edge – directed edge Rj Pi

Resource Allocation Graph:

Examples

A resource allocation graph

with no cycle no deadlock

A resource allocation graph

with a deadlock

A resource allocation graph

with a cycle but no deadlock

Facts & Methods

 If graph contains no cycles no deadlock.

 If graph contains a cycle

 if only one instance per resource type, then deadlock.

 if several instances per resource type, possibility of deadlock.

 Deadlock Prevention: ensure that the system will never enter a
deadlock state – expensive operations

 Need to monitor all lock acquisitions

 Selectively deny those that might lead to deadlock

 Deadlock Detection: allow the system to enter a deadlock state and
then recover.

 Requires deadlock detection algorithm

 Technique for forcibly preempting resources and/or terminating
tasks

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources; must hold for nonsharable
resources.

 Hold and Wait – must guarantee that whenever a process requests a resource, it
does not hold any other resources.

 Require process to request and be allocated all its resources before it begins
execution, or allow process to request resources only when the process has
none.

 Low resource utilization; starvation possible

 No Preemption –

 If a process that is holding some resources requests another resource that
cannot be immediately allocated to it, then all resources currently being held
are released.

 Preempted resources are added to the list of resources for which the process is
waiting.

 Process will be restarted only when it can regain its old resources, as well as
the new ones that it is requesting.

 Circular Wait – impose a total ordering of all resource types, and require that each
process requests resources in an increasing order of enumeration.

Deadlock Avoidance

 Avoidance ensure that a system

never enters an unsafe state.

 The deadlock-avoidance algorithm
dynamically examines the resource-
allocation state to ensure that there can
never be a circular-wait condition

 Resource-allocation state is defined by
the number of available and allocated
resources, and the maximum demands
of the processes.

 System is in safe state if there exists a safe sequence of all processes:

Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi can still

request can be satisfied by currently available resources + resources held by all

the Pj, with j<i.

 If Pi resource needs are not immediately available, then Pi can wait until

all Pj have finished.

 When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate.

 When Pi terminates, Pi+1 can obtain its needed resources, and so on.

Banker’s Algorithm

 Each resource can have multiple instances.

 Each process must a priori claim maximum use.

 When a process requests a resource it may have to wait.

 When a process gets all its resources it must return them in a

finite amount of time.

Let n = number of processes, and m = number of resources types.

• Available: Vector of length m. If available [j] = k, there are k instances of resource

type Rj available.

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k

instances of resource type Rj.

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k

instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to

complete its task

Need [i,j] = Max[i,j] – Allocation [i,j].

Banker’s Algorithm - Example

 Consider the following snapshot of a system

Allocation Max Available

A B C D A B C D A B C D

P0 0 0 1 2 0 0 3 2 2 1 2 0

P1 2 0 0 0 2 7 5 0

P2 0 0 3 4 6 6 5 6

P3 2 3 5 4 4 3 5 6

P4 0 3 3 2 0 6 5 2

Banker’s Algorithm - Example

What is the content of the matrix Need denoting the number of

resources needed by each process?

Max – Allocation = Need (maxtrix)

Need

A B C D

P0 0 0 2 0

P1 0 7 5 0

P2 6 6 2 2

P3 2 0 0 2

P4 0 3 2 0

Banker’s Algorithm - Example

 Is the system in a safe state? Why?

 The allocation should be safe right now, with a sequence of process

execution.

 Yes, with <P0, P3, P4, P1, P2>

Resources available after each process finished

A B C D

P0 2 1 3 2

P3 4 4 8 6

P4 4 7 11 8

P1 6 7 11 8

P2 6 7 14 12

Banker’s Algorithm - Example

If a request from process P2 arrives for (0, 1, 2, 0), can the requested
be granted immediately? Why?

No, this can not be allocated.

If this is allocated, the resulting Available() is (2, 0, 0, 0),

there is no sequence of the process execution order that

lead to the completion of all processes. This is an unsafe

state.

Resource-Allocation Graph Algorithm

 Claim edge Pi Rj indicated that

process Pi may request resource

Rj; represented by a dashed line.

 Claim edge converts to request

edge when a process requests a

resource.

 When a resource is released by a

process, assignment edge

reconverts to a claim edge.

 Resources must be claimed a

priori in the system.

Example

 A system is composed of four processes

{P1, P2, P3, P4}

 And three types of resources

{R1, R2, R3}

 The number of units of the resources are

C= <3, 2, 2>

 System state

 process P1 holds 1 unit of R1 and requests 1 unit of R2.

 P2 holds 2 units of R2 and requests 1 unit each of R1 and R3.

 P3 holds 1 unit of R1 and requests 1 unit of R2.

 P4 holds 2 units of R3 and requests 1 unit of R1.

 Show the resource graph to represent the system state.

 Consider a sequence of processes executions without deadlock.

Example

 Sequence of processes executions is

 P4 gets the unit of R1 and finishes,

 P2 gets 1 unit of R1 and 1 unit of R3 and finishes,

 then P1 and P3 can finish.

 There is no deadlock in this situation.

Deadlock Detection

Resource-Allocation Graph Corresponding wait-for graph

Maintain wait-for graph if each resource has a single instance

Periodically invoke an algorithm that searches for a cycle in the

graph. If there is a cycle => a deadlock

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the system is in deadlock

state. Moreover, if Finish[i] == false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the

system is in deadlocked state.

Example of Detection Algorithm

 Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

Example (Cont.)

 P2 requests an additional instance of type C.

Request

A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.

 Deadlock exists, consisting of processes P1, P2, P3, and P4.

Logical vs. Physical Address Space

 Logical address (also referred to as virtual address)
 address seen by the CPU

 Physical address
 actual address seen by the memory unit

 The user program deals with logical addresses; it
never sees the real physical addresses

 They are the same for compile-time and load-time
address binding

 They are different for execution-time address-binding

Address binding can happen at three different stages

Compile time:

Address in the source program

are generally symbolic, e.g., count.

A compiler typically bind these

symbolic addresses to relocatable

addresses, e.g., “14B from the

beginning of this module”.

Load time:
Bind the relocatable addresses

to absolute address, e.g., 74014.

Execution time:
Binding delayed until run time if the

process can be moved during

execution from one memory segment

to another.

Contiguous memory allocation

 Each process is contained in a single contiguous

section of memory

 Hole: block of available memory

 holes of various size are scattered throughout memory

 Operating system maintains information about

 a) allocated partitions

 b) free partitions (hole)

Base and Limit Registers

 Two special registers,

base and limit are used to

prevent user from straying

outside the designated

area

 During context switch, OS

loads new base and limit

register from TCB

 User is NOT allowed to

change the base and limit

registers (privileged

instructions)

Contiguous memory allocation

 When a process arrives, it is allocated memory from

a hole large enough to accommodate it

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

An example of First-fit, Best-fit, and

Worst-fit

 First-fit

 Allocate the first hole that is big enough

 Best-fit

 allocate the smallest hole that is big enough

 must search entire list, unless ordered by size

 produces the smallest leftover hole

 Worst-fit

 allocate the largest hole; must also search entire list

 produces the largest leftover hole

An example of First-fit, Best-fit, and

Worst-fit

 Given five memory partitions of 100 KB, 500 KB, 200

KB, 300 KB, and 600 KB (in order)

 How would each of the first-fit, best-fit, and worst-fit

algorithms place processes of 212 KB, 417 KB, 112

KB, and 426 KB (in order)?

 Which algorithm makes the most efficient use of

memory?

100KB

212KB

First-fit

417KB

6
0

0
K

B
3
0
0
K

B
2
0
0
K

B
5
0
0
K

B

112KB

426KBMust wait

100KB

212KB

Best-fit

417KB

6
0

0
K

B
3
0
0
K

B
2
0
0
K

B
5
0
0
K

B

112KB

426KB

100KB

212KB

Worst-fit

417KB

6
0

0
K

B
3
0
0
K

B
2
0
0
K

B
5
0
0
K

B

112KB

426KBMust wait

Segmentation

 Memory-management scheme

that supports user view of

memory

 A program is a collection of

segments of different sizes

 A segment is a logical unit

1

3

2

4

user space

1

4

2

3

physical memory space

Segmentation

 Logical address consists of a two tuple:

<segment-number, offset>

 Segment table: maps two-dimensional physical addresses

 base – contains the starting physical address

 limit – specifies the length of the segment

 Problems with segmentation

 Must fit variable-sized segments into physical memory

 Might need to move process multiple times in order to fit
everything

Address Translation

Example of Segmentation

Logical view:

multiple separate

segments

Each segment is

allocated with a

contiguous memory

External

fragmentation

Example of Segmentation

 Consider the following segment table

 What are the physical addresses for the following

logical addresses?

a. 0,430 b. 1,10

c. 2,500 d. 3,400 e. 4,112

Segment Base Length

0 219 600

1 2300 14

2 90 100

3 1327 580

4 1952 96

Example of Segmentation

 Answer

 a. 219 + 430 = 649

 b. 2300 + 10 = 2310

 c. Illegal reference, trap to operating system

 d. 1327 + 400 = 1727

 e. Illegal reference, trap to operating system

Paging

 Physical address space of a process can be

Non-contiguous

 Divide physical memory into fixed-sized blocks called

frames,

 Divide logical memory into blocks of same size called

pages.

 Keep track of all free frames

 Set up a page table to translate logical to physical

addresses

Address Translation

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which contains base

address of each page in physical memory

 Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit

Page Table Implementation

 Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PRLR) indicates size of the page
table

 In this scheme every data/instruction access requires two
memory accesses.
 One for the page table and one for the data/instruction

TLB

 The two memory access problem can be solved by using TLB
(translation look-aside buffer)

 a special, small, fast-lookup hardware cache

 each entry in the TLB consists of a key (or tag) and a value

 page number is presented to the TLB, if found, its frame
number is immediately available to access memory

 fast but expensive

Paging Hardware With TLB

Can be very large,

e.g. 1M entries

TLB miss and Hit ratio

 TLB miss:

 If the page number is not in the TLB, a memory reference to
the page table must be made

 Hit ratio:

 percentage of times that a page number is found in the TLB.

 For example:

 Assume TLB search takes = 20ns; memory access takes
100ns

Effective Access Time (EAT)

 TLB hit 1 memory access = (1 +)

 TLB miss 2 memory accesses = (2 +)

 If Hit ratio = 80%

 EAT = (20 + 100) * 0.8 + (20 + 200) * 0.2 = 140ns

 If Hit ratio = 98%

 EAT = (20 + 100) * 0.98 + (20 + 200) * 0.02 = 122ns

Hierarchical Page Tables

 Modern computer supports a large logical address space

 computer system: 32 bit address

 page: 4KB

 page table: 1 million entries (232/212)

 page table entry: 4 bytes

 page table of each process: 4MB physical address

 Too big!!

 Solution: To break up the logical address space into

multiple page tables

 A simple technique is a two-level page table

Two-Level Page-Table Scheme

 Each page can be placed in any

physical frame inside main memory!

 Address-translation scheme for a two-

level 32-bit paging architecture

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 12-bit page number

 a 10-bit page offset

 logical address

page number page offset

p1 p2 d

12 10 10

Index into the

outer page table
displacement within the page

of the outer page table

Paging-Segmentation Combination

 Segmentation and Paging are often combined in order

to improve upon each other

 Segmented paging is helpful when the page table

becomes very large

 e.g., a large contiguous section of the page table that is

unused can be collapsed into a single segment table entry with

a page table address of zero

Paging-Segmentation Combination

