
COMP 3511

Operating Systems

Project #2

Objectives and Tasks

 Run Nachos with Pre-implemented Scheduling

System Skeleton

 Read source code of Nachos, implement ancillary

data structure

 Implement SJF Scheduling Algorithms

 Explain the Results

Task 1

 Task 1: Run Nachos with Pre-implemented

Scheduling System Skeleton

 Step 1: Download Nachos source code of this project

 Step 2: Extract the source code

 Step 3: Compile the code

 Step 4: Run nachos

 Step 5: Read the code

Task 1

 Two scheduling algorithms

 First Come First Serve (FCFS)

 Shortest Job First (SJF)

Task 1

Executable File Source File
Corresponding

Algorithm

Already

Implemented?

test0 test.0.cc FCFS Yes

test1 test.1.cc SJF No

Task 1

 Read the codes

 ReadyToRun()

 decides the policy of placing a thread into ready queue

(or multilevel queues) when the thread gets ready

 FindNextToRun()

 decides the policy of picking one thread to run from the

ready queue

 ShouldISwitch()

 decides whether the running thread should preemptively

give up to a newly forked thread

Task 2

 Task 2: Implement PrintListSize() function of data

structure “List”

 ReadyList:

 Record the threads ready to be executed.

 Described in list.h and list.cc

 PrintListSize()：

 Print the number of threads currently waiting in the

readyList

Task 3

 Task 3: Implement SJF Scheduling Algorithms

 Shortest Job First

 Only modify scheduler.cc

 Scheduler::ReadyToRun

 Scheduler::FindNextToRun

 Scheduler::ShouldISwitch

Task 3

 Shortest Job First

 the thread with the shortest burst time in the ReadyList

should be scheduled for running after the current

thread is done with burst.

 If there are more than one thread with the same

shortest burst time in the ReadyList, they must be

scheduled in FCFS manner

 Return first thread when scheduler needs to pick one

thread to run

Hint: insert the thread to ReadyList according to its burst

time when a thread gets ready.

Task 3

 Shortest Job First

 Hint: insert the thread to ReadyList according to its

burst time when a thread gets ready.

 Make use of the function SortedInsert() in List.cc

 Example: list->SortedInsert(thread,thread->getPriority());

this line of code insert the thread into the list based on its

priority.

Task 3

 Compile and Run

 Save your outputs to project2_test1.txt,

 Keep your source code scheduler.cc

Task 4

 Explain the Results
1. Understand the output of test0 (FCFS scheduling) and test1 (SJF

scheduling). Then calculate the following performance metrics of each

scheduling algorithms:

a) Average waiting time;

b) Response time;

c) Turn-around time.

2. Compare the performance among the two scheduling algorithms in the

aspects mentioned in question 1, then discuss the pros and cons of

each scheduling algorithms. (Note: you are strongly encouraged to

change the input threads in test.0.cc and test.1.cc in order to make

your discussion more convincing. However, when submitting the

outputs of test1, please do submit the outputs with the original input

threads.)

Outputs

 Please generate a single file using ZIP and submit it through

CASS

 Name of the ZIP: "proj2_********.zip" (* as student ID)

 Inside the ZIP file:

File Name Description

scheduler.cc

list.cc
Source codes you have accomplished by

the end of Task3

project2_test0.txt Output of test0 in Task2

project2_test1.txt Output of test1

project2_report.txt The answer to the questions in Task 4

