
Fall 2015 COMP 3511

Operating Systems

Lab #5 Review

Outline

 Operating system scheduling examples

 Scheduling algorithms

Linux Scheduling Through Version 2.5

 Prior to kernel version 2.5, ran variation of standard UNIX scheduling
algorithm

 Version 2.5 moved to constant order O(1) scheduling time

 Preemptive, priority based

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

 Map into global priority with numerically lower values indicating
higher priority

 Higher priority gets larger q

 Task run-able as long as time left in time slice (active)

 If no time left (expired), not run-able until all other tasks use their
slices

 All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

 Worked well, but poor response times for interactive processes

Linux Scheduling in Version 2.6.23 +

 Completely Fair Scheduler (CFS)

 Scheduling classes

 Each has specific priority

 Scheduler picks highest priority task in highest scheduling class

 Rather than quantum based on fixed time allotments, based on proportion
of CPU time

 2 scheduling classes included, others can be added

1. default

2. real-time

 Quantum calculated based on nice value from -20 to +19

 Lower value is higher priority

 Calculates target latency – interval of time during which task should run at
least once

 Target latency can increase if say number of active tasks increases

 CFS scheduler maintains per task virtual run time in variable vruntime

 Associated with decay factor based on priority of task – lower priority is
higher decay rate

 Normal default priority yields virtual run time = actual run time

 To decide next task to run, scheduler picks task with lowest virtual run time

CFS Performance

Linux Scheduling (Cont.)

 Real-time scheduling according to POSIX.1b

 Real-time tasks have static priorities

 Real-time plus normal map into global priority

scheme

 Nice value of -20 maps to global priority 100

 Nice value of +19 maps to priority 139

Windows Scheduling

 Windows uses priority-based preemptive scheduling

 Highest-priority thread runs next

 Dispatcher is scheduler

 Thread runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread

 Real-time threads can preempt non-real-time

 32-level priority scheme

 Variable class is 1-15, real-time class is 16-31

 Priority 0 is memory-management thread

 Queue for each priority

 If no run-able thread, runs idle thread

Windows Priority Classes

 Win32 API identifies several priority classes to which a process can belong

 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

 All are variable except REALTIME

 A thread within a given priority class has a relative priority

 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL,

BELOW_NORMAL, LOWEST, IDLE

 Priority class and relative priority combine to give numeric priority

 Base priority is NORMAL within the class

 If quantum expires, priority lowered, but never below base

 If wait occurs, priority boosted depending on what was waited for

 Foreground window given 3x priority boost

 Windows 7 added user-mode scheduling (UMS)

 Applications create and manage threads independent of kernel

 For large number of threads, much more efficient

 UMS schedulers come from programming language libraries like C++

Concurrent Runtime (ConcRT) framework

Windows Priorities

Priority Classes

R
e
la

ti
v
e
 P

ri
o

ri
ty

Highest priority

Lowest priority

Solaris

 Priority-based scheduling

 Six classes available

 Time sharing (default) (TS)

 Interactive (IA)

 Real time (RT)

 System (SYS)

 Fair Share (FSS)

 Fixed priority (FP)

 Given thread can be in one class at a time

 Each class has its own scheduling algorithm

 Time sharing is multi-level feedback queue

 Loadable table configurable by sysadmin

Solaris Dispatch Table

New priority after New priority after

E.g., a thread with

priority 20 would be

preempted after 120

ms. It is then

suspended and

assigned with a new

priority 10, i.e. longer

time in its next run.

Solaris Scheduling

Solaris Scheduling (Cont.)

 Scheduler converts class-specific priorities into a per-

thread global priority

 Thread with highest priority runs next

 Runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread

 Multiple threads at same priority selected via RR

CPU Scheduler & Dispatcher

 Selects from among the processes in memory that are ready to

execute, and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process

1. Switches from running to waiting state

2. Switches from running to ready state

2. Switches from waiting to ready

3. Terminates

 Dispatcher module gives control of the CPU to the process selected

by the CPU scheduler; this involves

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that

program

Scheduling Criteria

 To Maximize:

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution

per time unit

 To Minimize:

 Turnaround time – amount of time to execute a particular

process

 Waiting time – amount of time a process has been waiting

in the ready queue

 Response time – amount of time it takes from when a

request was submitted until the first response is produced,

not output (for time-sharing environment)

Preemptive SJF: Example

Process Burst Time Arrival Time

P1 7 0

P2 4 2

P3 1 4

P4 4 5

0 2 4 5 7 11 16

P1 P1P2 P2P3 P4

The average waiting time
(9 + 1 + 0 +2)/4 = 3

P1 gets preempted at time 2

P2 gets preempted at time 4

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer highest priority)

 Preemptive

 Nonpreemptive

 SJF is a priority scheduling where priority is the predicted next

CPU burst time

 Problem : Starvation – low priority processes may never

execute

 Solution : Aging – as time progresses increase the priority of

the process

Round Robin (RR) Scheduling

 Each process gets a small unit of CPU time (time quantum),

usually 10-100 milliseconds. After quantum expires, the

process is preempted (OS timer interrupt) and added to the

end of the ready queue.

 n processes in the ready queue and the time quantum is q

 Each process gets 1/n of the CPU time

 In chunks of at most q time units at once.

 No process waits more than (n-1)q time units

 Performance

 q large FIFO

 q small Interleaved

 q must be large with respect to context switch, otherwise overhead is too

high

Example of RR in Notes

 Example: Process Burst Time
P1 53
P2 8
P3 68
P4 24

 The Gantt chart is:

 Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

 Average waiting time = (72+20+85+88)/4=66¼

 Average completion time = (125+28+153+112)/4 = 104½

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

 Example: Process Burst Time Arrival Time
P1 53 28
P2 8 16
P3 68 0
P4 24 10

 The Gantt chart is:

 Waiting time for P1=(68-28)+(112-88)+(140-132)=72
P2=(40-16)=24
P3=(48-20)+(92-68)+(132-112)=72
P4=(20-10)+(88-40)=58

 Average waiting time = (72+24+72+58)/4 = 56½

 Average completion time = (153+48+140+92)/4 = 108¼

 Average turnaround time = (125+32+140+82)/4 = 94¾

p3 p4 p2 p3 p1 p4 p3 p1 p3 p1

0 20 40 48 68 88 92 112 132 140 153

Consider Different Arrival Time

turnaround time = completion time-arrival time

Turnaround Time Varies With The

Time Quantum

Turnaround time

(waiting time + burst)

the total amount of time

to execute a particular

process

Turnaround Time Varies With The

Time Quantum: Example

P1: 6; P2: 3

P3: 1; P4: 7

Q=1

p1 p2 p3 p4 p1p1p1p1p1 p2p2 p4p4p4p4p4p4

Avg Turnaround Time = (15+9+3+17)/4 = 11

0 3 6 9 12 15 17

p1 p1 p2 p2 p3 p4 p4 p1 p1 p2 p4 p4 p1p1 p4p4p4

Q=2 Avg Turnaround Time = (14+10+5+17)/4 = 11.5

p1p1p1 p2p2p2 p3 p4p4p4 p1p1p1 p4p4p4 p4

Q=3 Avg Turnaround Time = (13+6+7+17)/4 = 10.75

P1: 6; P2: 3

P3: 1; P4: 7

Q=4

p1 p2 p3 p4 p1p1p1p1p1 p2p2 p4p4p4p4p4 p4

Avg Turnaround Time = (14+7+8+17)/4 = 11.5

0 3 6 9 12 15 17

p1 p1 p2 p2 p3 p4 p4p1 p1 p2 p4 p4 p1p1 p4p4p4

Q=5 Avg Turnaround Time = (15+8+9+17)/4 = 12.25

p1p1p1 p2 p2 p2 p3 p4p4p4p1p1p1 p4p4p4 p4

Q=6 Avg Turnaround Time = (6+9+10+17)/4 = 10.5

p1p1p1 p2p2p2 p3 p4p4p4p1p1p1 p4p4p4 p4

Q=7 Avg Turnaround Time = (6+9+10+17)/4 = 10.5

Multi-level Feedback Queue

Given the arrival time and CPU-burst of 5 processes shown in the following diagram:

Suppose the OS uses a 3-level feedback queue to schedule the above 5 processes.

Round-Robin scheduling strategy is used for the queue with the highest priority and the queue

with the second highest priority, but the time quantum used in these two queues is different.

First-come-first serve scheduling strategy is used for the queue with the lowest priority. The

scheduling is preemptive.

a) Construct a Gantt chart depicting the

scheduling for the set of processes specified in

the above diagram using this 3-level feedback queue.

b) Calculate the average waiting time

for the schedule constructed in a).

Multi-level Feedback Queue

P1 P1 P2 P3 P1 P4

0 4 6 10 12 16 20

P1 P2 P4 P5 P4

20 22 30 32 36 42

P5 P1 P2 P4

42 44 47 55 59

b) Waiting time: (Finish time – Arrive time – Burst time)

P1: 47– 0 – 15 = 32; P2: 55 – 6 – 20 = 29;

P3: 12 – 10 – 2 = 0; P4: 59 – 16 – 16 = 27;

P5: 44 – 32 – 6 = 6;

Average waiting time:

18.8

a) Gantt Chart:

Q2: Quantum: 8

Q3(FCFS)

Q1: Quantum: 4

