
Fall 2015 COMP 3511

Operating Systems

Lab #5 Review

Outline

 Operating system scheduling examples

 Scheduling algorithms

Linux Scheduling Through Version 2.5

 Prior to kernel version 2.5, ran variation of standard UNIX scheduling
algorithm

 Version 2.5 moved to constant order O(1) scheduling time

 Preemptive, priority based

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

 Map into global priority with numerically lower values indicating
higher priority

 Higher priority gets larger q

 Task run-able as long as time left in time slice (active)

 If no time left (expired), not run-able until all other tasks use their
slices

 All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

 Worked well, but poor response times for interactive processes

Linux Scheduling in Version 2.6.23 +

 Completely Fair Scheduler (CFS)

 Scheduling classes

 Each has specific priority

 Scheduler picks highest priority task in highest scheduling class

 Rather than quantum based on fixed time allotments, based on proportion
of CPU time

 2 scheduling classes included, others can be added

1. default

2. real-time

 Quantum calculated based on nice value from -20 to +19

 Lower value is higher priority

 Calculates target latency – interval of time during which task should run at
least once

 Target latency can increase if say number of active tasks increases

 CFS scheduler maintains per task virtual run time in variable vruntime

 Associated with decay factor based on priority of task – lower priority is
higher decay rate

 Normal default priority yields virtual run time = actual run time

 To decide next task to run, scheduler picks task with lowest virtual run time

CFS Performance

Linux Scheduling (Cont.)

 Real-time scheduling according to POSIX.1b

 Real-time tasks have static priorities

 Real-time plus normal map into global priority

scheme

 Nice value of -20 maps to global priority 100

 Nice value of +19 maps to priority 139

Windows Scheduling

 Windows uses priority-based preemptive scheduling

 Highest-priority thread runs next

 Dispatcher is scheduler

 Thread runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread

 Real-time threads can preempt non-real-time

 32-level priority scheme

 Variable class is 1-15, real-time class is 16-31

 Priority 0 is memory-management thread

 Queue for each priority

 If no run-able thread, runs idle thread

Windows Priority Classes

 Win32 API identifies several priority classes to which a process can belong

 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

 All are variable except REALTIME

 A thread within a given priority class has a relative priority

 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL,

BELOW_NORMAL, LOWEST, IDLE

 Priority class and relative priority combine to give numeric priority

 Base priority is NORMAL within the class

 If quantum expires, priority lowered, but never below base

 If wait occurs, priority boosted depending on what was waited for

 Foreground window given 3x priority boost

 Windows 7 added user-mode scheduling (UMS)

 Applications create and manage threads independent of kernel

 For large number of threads, much more efficient

 UMS schedulers come from programming language libraries like C++

Concurrent Runtime (ConcRT) framework

Windows Priorities

Priority Classes

R
e
la

ti
v
e
 P

ri
o

ri
ty

Highest priority

Lowest priority

Solaris

 Priority-based scheduling

 Six classes available

 Time sharing (default) (TS)

 Interactive (IA)

 Real time (RT)

 System (SYS)

 Fair Share (FSS)

 Fixed priority (FP)

 Given thread can be in one class at a time

 Each class has its own scheduling algorithm

 Time sharing is multi-level feedback queue

 Loadable table configurable by sysadmin

Solaris Dispatch Table

New priority after New priority after

E.g., a thread with

priority 20 would be

preempted after 120

ms. It is then

suspended and

assigned with a new

priority 10, i.e. longer

time in its next run.

Solaris Scheduling

Solaris Scheduling (Cont.)

 Scheduler converts class-specific priorities into a per-

thread global priority

 Thread with highest priority runs next

 Runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread

 Multiple threads at same priority selected via RR

CPU Scheduler & Dispatcher

 Selects from among the processes in memory that are ready to

execute, and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process

1. Switches from running to waiting state

2. Switches from running to ready state

2. Switches from waiting to ready

3. Terminates

 Dispatcher module gives control of the CPU to the process selected

by the CPU scheduler; this involves

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that

program

Scheduling Criteria

 To Maximize:

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution

per time unit

 To Minimize:

 Turnaround time – amount of time to execute a particular

process

 Waiting time – amount of time a process has been waiting

in the ready queue

 Response time – amount of time it takes from when a

request was submitted until the first response is produced,

not output (for time-sharing environment)

Preemptive SJF: Example

Process Burst Time Arrival Time

P1 7 0

P2 4 2

P3 1 4

P4 4 5

0 2 4 5 7 11 16

P1 P1P2 P2P3 P4

The average waiting time
(9 + 1 + 0 +2)/4 = 3

P1 gets preempted at time 2

P2 gets preempted at time 4

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is a priority scheduling where priority is the predicted next

CPU burst time

 Problem : Starvation – low priority processes may never

execute

 Solution : Aging – as time progresses increase the priority of

the process

Round Robin (RR) Scheduling

 Each process gets a small unit of CPU time (time quantum),

usually 10-100 milliseconds. After quantum expires, the

process is preempted (OS timer interrupt) and added to the

end of the ready queue.

 n processes in the ready queue and the time quantum is q

 Each process gets 1/n of the CPU time

 In chunks of at most q time units at once.

 No process waits more than (n-1)q time units

 Performance

 q large  FIFO

 q small  Interleaved

 q must be large with respect to context switch, otherwise overhead is too

high

Example of RR in Notes

 Example: Process Burst Time
P1 53
P2 8
P3 68
P4 24

 The Gantt chart is:

 Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

 Average waiting time = (72+20+85+88)/4=66¼

 Average completion time = (125+28+153+112)/4 = 104½

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

 Example: Process Burst Time Arrival Time
P1 53 28
P2 8 16
P3 68 0
P4 24 10

 The Gantt chart is:

 Waiting time for P1=(68-28)+(112-88)+(140-132)=72
P2=(40-16)=24
P3=(48-20)+(92-68)+(132-112)=72
P4=(20-10)+(88-40)=58

 Average waiting time = (72+24+72+58)/4 = 56½

 Average completion time = (153+48+140+92)/4 = 108¼

 Average turnaround time = (125+32+140+82)/4 = 94¾

p3 p4 p2 p3 p1 p4 p3 p1 p3 p1

0 20 40 48 68 88 92 112 132 140 153

Consider Different Arrival Time

turnaround time = completion time-arrival time

Turnaround Time Varies With The

Time Quantum

Turnaround time

(waiting time + burst)

the total amount of time

to execute a particular

process

Turnaround Time Varies With The

Time Quantum: Example

P1: 6; P2: 3

P3: 1; P4: 7

Q=1

p1 p2 p3 p4 p1p1p1p1p1 p2p2 p4p4p4p4p4p4

Avg Turnaround Time = (15+9+3+17)/4 = 11

0 3 6 9 12 15 17

p1 p1 p2 p2 p3 p4 p4 p1 p1 p2 p4 p4 p1p1 p4p4p4

Q=2 Avg Turnaround Time = (14+10+5+17)/4 = 11.5

p1p1p1 p2p2p2 p3 p4p4p4 p1p1p1 p4p4p4 p4

Q=3 Avg Turnaround Time = (13+6+7+17)/4 = 10.75

P1: 6; P2: 3

P3: 1; P4: 7

Q=4

p1 p2 p3 p4 p1p1p1p1p1 p2p2 p4p4p4p4p4 p4

Avg Turnaround Time = (14+7+8+17)/4 = 11.5

0 3 6 9 12 15 17

p1 p1 p2 p2 p3 p4 p4p1 p1 p2 p4 p4 p1p1 p4p4p4

Q=5 Avg Turnaround Time = (15+8+9+17)/4 = 12.25

p1p1p1 p2 p2 p2 p3 p4p4p4p1p1p1 p4p4p4 p4

Q=6 Avg Turnaround Time = (6+9+10+17)/4 = 10.5

p1p1p1 p2p2p2 p3 p4p4p4p1p1p1 p4p4p4 p4

Q=7 Avg Turnaround Time = (6+9+10+17)/4 = 10.5

Multi-level Feedback Queue

Given the arrival time and CPU-burst of 5 processes shown in the following diagram:

Suppose the OS uses a 3-level feedback queue to schedule the above 5 processes.

Round-Robin scheduling strategy is used for the queue with the highest priority and the queue

with the second highest priority, but the time quantum used in these two queues is different.

First-come-first serve scheduling strategy is used for the queue with the lowest priority. The

scheduling is preemptive.

a) Construct a Gantt chart depicting the

scheduling for the set of processes specified in

the above diagram using this 3-level feedback queue.

b) Calculate the average waiting time

for the schedule constructed in a).

Multi-level Feedback Queue

P1 P1 P2 P3 P1 P4

0 4 6 10 12 16 20

P1 P2 P4 P5 P4

20 22 30 32 36 42

P5 P1 P2 P4

42 44 47 55 59

b) Waiting time: (Finish time – Arrive time – Burst time)

P1: 47– 0 – 15 = 32; P2: 55 – 6 – 20 = 29;

P3: 12 – 10 – 2 = 0; P4: 59 – 16 – 16 = 27;

P5: 44 – 32 – 6 = 6;

Average waiting time:

18.8

a) Gantt Chart:

Q2: Quantum: 8

Q3(FCFS)

Q1: Quantum: 4

