Fall 2015 COMP 3511
Operating Systems



Outline

Review Questions

Nachos Threads and Example
Nachos Thread Scheduling
Nachos Thread Switching



Review Questions

PPT version
m http://course.cs.ust.hk/comp3511/lab/lab05/lab05 review.ppt

PDF version
m http://course.cs.ust.hk/comp3511/lab/lab05/lab05 review.pdf




Nachos Threads

In Nachos (and many systems) a process consists
of:

An address space, which is further broken down into:

1) Executable code

2) Stack space for local variables

3) Heap space for global variables and dynamically
allocated memory

A single thread of control, e.g., the CPU executes
instructions sequentially within the process

Other objects, such as open file descriptors



Nachos Threads

It is sometimes useful to allow multiple threads of
control to execute concurrently within a single

process.

These individual threads of control are called
threads.

One big difference between threads and processes is
that global variables are shared among all threads.



Nachos Threads

Nachos provides threads

Nachos threads execute and share the same code (the
Nachos source code)

and share the same global variables

The Nachos scheduler maintains a data structure
called a ready list, which keeps track of the threads
that are ready to execute.



Nachos Threads

Threads on the ready list are ready to execute and
can be selected for executing by the scheduler at any
time.

Each thread has an associated state describing what
the thread is currently doing.

Nachos' threads are in one of four states: READY,
RUNNING, BLOCKED, JUST _CREATED



Nachos Threads

READY:

The thread is eligible to use the CPU (e.g., it's on the
ready list), but another thread happens to be running.

When the scheduler selects a thread for execution, it
removes it from the ready list and changes its state
from READY to RUNNING.

Only threads in the READY state should be found on
the ready list.



Nachos Threads

RUNNING:

The thread is currently running.

Only one thread can be in the RUNNING state at a
time.

In Nachos, the global variable currentThread always
points to the currently running thread.



Nachos Threads

BLOCKED:

The thread is blocked waiting for some external event;
It cannot execute until that event takes place.

Specifically, the thread has put itself to sleep via
Thread::Sleep().

It may be waiting on a condition variable, semaphore,
etc.



Nachos Threads

JUST _CREATED:
The thread exists, but has no stack yet.

This state is a temporary state used during thread
creation.

The Thread constructor creates a thread, whereas
Thread::Fork() actually turns the thread into one that
the CPU can execute (e.g., by placing it on the ready
list).



Nachos Threads

Nachos does not maintain an explicit process table.

Instead, information associated with thread is
maintained as (usually) private data of a Thread

object instance.

To get at a specific thread's information, a pointer to
the thread instance is needed.



Nachos Threads

The Nachos Thread object supports the following
operations:

Thread *Thread(char *debugName)
Fork(VoidFunctionPtr func, int arg)

void StackAllocate(VoidFunctionPtr func, int arg)
void Yield(), void Sleep(), void Finish()



Nachos Thread’s example

© Thread *th1 = new Thread(“Thread1”);

Ready list




Nachos Thread’s example
I —
© Thread *th1 = new Thread(“Thread1”);

Ready list




Nachos Thread’s example
S
~ th1->Fork();

Ready list

th1




Nachos Thread’s example
—
currentThread = th2:

Ready list

th1




Nachos Thread’s example

currentThread = th2:

scheduler selects

th1

for execution

Ready list

th1




Nachos Thread’s example

currentThread = ;

scheduler selects

th1

for execution

Ready list

th1 | th2




Nachos Thread’s example
—
currentThread = th1:

Ready list

th2




Nachos Thread’s example

currentThread = th1:

Ask user to enter
the user’s name

Ready list

th2




Nachos Thread’s example

~ th1->Sleep();

currentThread = ;

Ready list

% th2




Nachos Thread’s example

~ th1->Sleep();

currentThread = th2:

Ready list




Nachos Thread’s example

~ th1->Sleep();

currentThread = th2:

User has enterec
the user name...

Wake up! Ready list




Nachos Thread’s example
—
currentThread = th2:

Ready list

th1




Nachos Thread Scheduling

Threads that are ready to run are kept on the ready
list.

A process is in the READY state only if it has all the
resources it needs, other than the CPU

Processes blocked waiting for I/0, memory, etc. are
generally stored in a queue associated with the
resource being waited on.



Nachos Thread Scheduling

The scheduler decides which thread to run next.

The scheduler is invoked whenever the current
thread wishes to give up the CPU.

e.g., the current thread may have initiated an I/O
operation and must wait for it to complete before
executing further.



Nachos Thread Scheduling

A simple scheduling policy:

threads reside on a single, un-prioritized ready list, and
threads are selected in a round-robin fashion.

That is, threads are always appended to the end of

the ready list, and the scheduler always selects the
thread at the front of the list.



Nachos Thread Scheduling

Alternatively, Nachos may preempt the current thread

in order to prevent one thread from monopolizing the
CPU.

Scheduling is handled by routines in the Scheduler
object with the following operations:

void ReadyToRun(Thread *thread)
Thread *FindNextToRun()
void Run(Thread *nextThread)



Nachos Thread Scheduling

void ReadyToRun(Thread *thread)

Make thread ready to run and place it on the ready list.

Note that ReadyToRun doesn't actually start running
the thread; it simply changes its state to READY and
places it on the ready list.

The thread won't start executing until later, when the
scheduler chooses it.



Nachos Thread Scheduling

Thread *FindNextToRun()
Select a ready thread and return it.

For round-robin fashion, FindNextToRun simply returns
the thread at the front of the ready list.



Nachos Thread Scheduling

void Run(Thread *nextThread)

Do the dirty work of suspending the current thread and
switching to the new one.

Note that it is the currently running thread that calls
Run().

A thread calls this routine when it no longer wishes to
execute.



Nachos Thread Switching

Switching the CPU from one thread to another
Involves:

suspending the current thread
saving its state (e.g., registers)

then restoring the state of the thread being switched to



Nachos Thread Switching

The thread switch actually completes at the moment
a new program counter is loaded into PC.

At that point, the CPU is no longer executing the
thread switching code, it is executing code associated
with the new thread.



Nachos Thread Switching

The routine Switch(oldThread, nextThread) actually
performs a thread switch:

Save all registers in oldThread's context block and
suspend it

load new values into the registers from the context
block of the nextThread

Once the saved PC is loaded, Switch() is no longer
executing; we are now executing instructions
associated with the new thread



Nachos Thread Switching

After returning from Switch, the previous thread is no
longer running. Thread nextThread is running now.

The routine Switch() is written in assembly language
because it is a machine-depended routine.

It has to manipulate registers, look into the thread's
stack, etc.



