
Fall 2015 COMP 3511
Operating Systems

Lab 05

Outline

n  Review Questions

n  Nachos Threads and Example
n  Nachos Thread Scheduling
n  Nachos Thread Switching

Review Questions

n  PPT version

n  http://course.cs.ust.hk/comp3511/lab/lab05/lab05_review.ppt

n  PDF version
n  http://course.cs.ust.hk/comp3511/lab/lab05/lab05_review.pdf

Nachos Threads

n  In Nachos (and many systems) a process consists
of:

n  An address space, which is further broken down into:
n  1) Executable code
n  2) Stack space for local variables
n  3) Heap space for global variables and dynamically

allocated memory

n  A single thread of control, e.g., the CPU executes
instructions sequentially within the process

n  Other objects, such as open file descriptors

Nachos Threads

n  It is sometimes useful to allow multiple threads of

control to execute concurrently within a single
process.

n  These individual threads of control are called
threads.

n  One big difference between threads and processes is
that global variables are shared among all threads.

Nachos Threads

n  Nachos provides threads

n  Nachos threads execute and share the same code (the
Nachos source code)

n  and share the same global variables

n  The Nachos scheduler maintains a data structure
called a ready list, which keeps track of the threads
that are ready to execute.

Nachos Threads

n  Threads on the ready list are ready to execute and

can be selected for executing by the scheduler at any
time.

n  Each thread has an associated state describing what
the thread is currently doing.

n  Nachos' threads are in one of four states: READY,
RUNNING, BLOCKED, JUST_CREATED

Nachos Threads

n  READY:

n  The thread is eligible to use the CPU (e.g., it's on the
ready list), but another thread happens to be running.

n  When the scheduler selects a thread for execution, it
removes it from the ready list and changes its state
from READY to RUNNING.

n  Only threads in the READY state should be found on

the ready list.

Nachos Threads

n  RUNNING:

n  The thread is currently running.

n  Only one thread can be in the RUNNING state at a
time.

n  In Nachos, the global variable currentThread always
points to the currently running thread.

Nachos Threads

n  BLOCKED:

n  The thread is blocked waiting for some external event;
it cannot execute until that event takes place.

n  Specifically, the thread has put itself to sleep via
Thread::Sleep().

n  It may be waiting on a condition variable, semaphore,
etc.

Nachos Threads

n  JUST_CREATED:

n  The thread exists, but has no stack yet.

n  This state is a temporary state used during thread
creation.

n  The Thread constructor creates a thread, whereas
Thread::Fork() actually turns the thread into one that
the CPU can execute (e.g., by placing it on the ready
list).

Nachos Threads

n  Nachos does not maintain an explicit process table.

n  Instead, information associated with thread is
maintained as (usually) private data of a Thread
object instance.

n  To get at a specific thread's information, a pointer to
the thread instance is needed.

Nachos Threads

n  The Nachos Thread object supports the following
operations:

n  Thread *Thread(char *debugName)
n  Fork(VoidFunctionPtr func, int arg)
n  void StackAllocate(VoidFunctionPtr func, int arg)
n  void Yield(), void Sleep(), void Finish()

Nachos Thread’s example

n  Thread *th1 = new Thread(“Thread1”);

Ready list

CPU

Nachos Thread’s example

n  Thread *th1 = new Thread(“Thread1”);

State:
 JUST_CREATED

th1

Ready list

CPU

Nachos Thread’s example

n  th1àFork();

th1

State:
 READY

STACK

Ready list

th1

CPU

Nachos Thread’s example

th1

State:
 READY

STACK

Ready list

th1

CPU

th2
is running

currentThread = th2;

Nachos Thread’s example

th1

STACK

Ready list

th1

CPU

th2
is running State:

 READY scheduler selects
th1

for execution

currentThread = th2;

Nachos Thread’s example

th1

STACK

Ready list

th1

CPU

th2

State:
 READY scheduler selects

th1
for execution

currentThread = ;

Nachos Thread’s example

th1

State:
 RUNNING

STACK

Ready list

th2

CPU

th1
is running

currentThread = th1;

Nachos Thread’s example

th1

State:
 RUNNING

STACK

Ready list

th2

CPU

th1
is running

currentThread = th1;

Ask user to enter
the user’s name

Nachos Thread’s example

n  th1àSleep();

th1

State:
 BLOCKED

STACK

Ready list

CPU

currentThread = ;

Zzz zzz zzz zzz

th2

Nachos Thread’s example

n  th1àSleep();

th1

State:
 BLOCKED

STACK

Ready list

CPU

currentThread = th2;

th2
is running

Zzz zzz zzz zzz

Nachos Thread’s example

n  th1àSleep();

th1

State:
 BLOCKED

STACK

Ready list

CPU

currentThread = th2;

th2
is running

User has entered
the user name…

Wake up!!

Nachos Thread’s example

th1

State:
 READY

STACK

Ready list

CPU

currentThread = th2;

th2
is running

th1

Nachos Thread Scheduling

n  Threads that are ready to run are kept on the ready
list.

n  A process is in the READY state only if it has all the
resources it needs, other than the CPU

n  Processes blocked waiting for I/O, memory, etc. are
generally stored in a queue associated with the
resource being waited on.

Nachos Thread Scheduling

n  The scheduler decides which thread to run next.

n  The scheduler is invoked whenever the current
thread wishes to give up the CPU.

n  e.g., the current thread may have initiated an I/O
operation and must wait for it to complete before
executing further.

Nachos Thread Scheduling

n  A simple scheduling policy:
n  threads reside on a single, un-prioritized ready list, and

threads are selected in a round-robin fashion.

n  That is, threads are always appended to the end of
the ready list, and the scheduler always selects the
thread at the front of the list.

Nachos Thread Scheduling

n  Alternatively, Nachos may preempt the current thread
in order to prevent one thread from monopolizing the
CPU.

n  Scheduling is handled by routines in the Scheduler
object with the following operations:

n  void ReadyToRun(Thread *thread)
n  Thread *FindNextToRun()
n  void Run(Thread *nextThread)

Nachos Thread Scheduling

n  void ReadyToRun(Thread *thread)

n  Make thread ready to run and place it on the ready list.

n  Note that ReadyToRun doesn't actually start running
the thread; it simply changes its state to READY and
places it on the ready list.

n  The thread won't start executing until later, when the
scheduler chooses it.

Nachos Thread Scheduling

n  Thread *FindNextToRun()

n  Select a ready thread and return it.

n  For round-robin fashion, FindNextToRun simply returns
the thread at the front of the ready list.

Nachos Thread Scheduling

n  void Run(Thread *nextThread)

n  Do the dirty work of suspending the current thread and
switching to the new one.

n  Note that it is the currently running thread that calls
Run().

n  A thread calls this routine when it no longer wishes to
execute.

Nachos Thread Switching

n  Switching the CPU from one thread to another
involves:

n  suspending the current thread

n  saving its state (e.g., registers)

n  then restoring the state of the thread being switched to

Nachos Thread Switching

n  The thread switch actually completes at the moment
a new program counter is loaded into PC.

n  At that point, the CPU is no longer executing the
thread switching code, it is executing code associated
with the new thread.

Nachos Thread Switching

n  The routine Switch(oldThread, nextThread) actually

performs a thread switch:

n  Save all registers in oldThread's context block and
suspend it

n  load new values into the registers from the context
block of the nextThread

n  Once the saved PC is loaded, Switch() is no longer
executing; we are now executing instructions
associated with the new thread

Nachos Thread Switching

n  After returning from Switch, the previous thread is no

longer running. Thread nextThread is running now.

n  The routine Switch() is written in assembly language
because it is a machine-depended routine.

n  It has to manipulate registers, look into the thread's
stack, etc.

