Fall COMP 3511
Operating Systems

Tutorial and Lab #4

Outline

~ Review Questions

© Inter-Process Communication or IPC
~ Thread

© Scheduling

Q.1

Distinguish between data and task parallelism.

Data parallelism involves distributing subsets of the
same data across multiple computing cores and
performing the same operation on each core.

Task parallelism involves distributing tasks across the
different computing cores where each task is
performing a unique operation.

Q.2

Distinguish between parallelism and concurrency.

A parallel system can perform more than one task
simultaneously.

A concurrent system supports more than one task by
allowing multiple tasks to make progress.

Q.3

What are the general components of a thread in
Windows?

a unique ID

a register set that represents the status of the
processor

a user stack for user mode
a kernel stack for kernel mode

a private storage area used by run-time libraries and
dynamic link libraries.

Q. 4

List the four major categories of the benefits of multithreaded
programming. Briefly explain each.

Four categories: responsiveness, resource sharing,
economy, and utilization of multiprocessor architectures.

Responsiveness: a multithreaded program can allow a
program to run even if part of it is blocked.

Resource sharing: an application has several different
threads of activity within the same address space. Threads

share the resources of the process

Q. 4 (cont.)

List the four major categories of the benefits of multithreaded
programming. Briefly explain each.

Economy: it is more economical to create new threads
than new processes.

utilization of multiprocessor architectures:

A single-threaded process can only execute on one
processor regardless of the number of processors actually
available.

Multithreaded programs can run on multiple processors,
taking full utilization of the computing resources, thereby
increasing efficiency.

Q.5

Explain the difference between response time and
turnaround time. These times are both used to
measure the effectiveness of scheduling schemes.

Turnaround time is the sum of the periods that a
process is spent waiting to get into memory, waiting in
the ready queue, executing on the CPU, and doing 1/O.
Turnaround time essentially measures the amount of
time it takes to execute a process.

Response time, on the other hand, is a measure of
the time that elapses between a request and the first
response produced.

Interprocess Communication - IPC

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

Reasons for cooperating processes:

Information sharing

Computation speedup

Modularity

Convenience
Cooperating processes need interprocess communication (IPC)
Two models of IPC

Shared memory

Message passing

Communications Models

process A

process B

message queue

— M

my|MofMmsgj ...

Mp

kernel

(a)

process A

L

shared memory

process B

kernel

Cooperating Processes

Independent process cannot affect or be affected by
the execution of another process

Cooperating process can affect or be affected by the
execution of another process

Advantages of process cooperation
Information sharing
Computation speed-up
Modularity
Convenience

Sockets

A socket is defined as an endpoint for communication

Concatenation of IP address and port — a number included
at start of message packet to differentiate network
services on a host

The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

Communication consists between a pair of sockets

All ports below 1024 are well known, used for standard
services

Special IP address 127.0.0.1 (loopback) to refer to system
on which process is running

Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(11E7.25,.11€) H10)

Sockets 1n Java

Three types of sockets
Connection-oriented (TCP)
Connectionless (UDP)
MulticastSocket class—

data can be sent to multiple
recipients

Consider this “Date” server:

import java.net.*;
import java.io.x*;

public class DateServer

{

}

public static void main(String[] args) {

}

try {
ServerSocket sock = new ServerSocket(6013);

/* now listen for connections */
while (true) {
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

}

catch (IOException ioe) {
System.err.println(ioe);

}

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems

Again uses ports for service differentiation
Stubs — client-side proxy for the actual procedure on the server
The client-side stub locates the server and marshalls the parameters

The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

On Windows, stub code compile from specification written in Microsoft
Interface Definition Language (MIDL)

Data representation handled via External Data Representation (XDL)
format to account for different architectures
Big-endian and little-endian
Remote communication has more failure scenarios than local
Messages can be delivered exactly once rather than at most once

OS typically provides a rendezvous (or matchmaker) service to
connect client and server

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port P in user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server
Port: port P
<contents>

From: RPC
Port: P
To: client
Port: kernel
<output>

server

matchmaker
receives
message, looks
up answer

h 4

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

y

A
daemon
processes
request and
processes send
output

Thread Libraries

Thread library provides programmer with API for
creating and managing threads

Two primary ways of implementing
Library entirely in user space
Kernel-level library supported by the OS

Pthreads

May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization

Specification, not implementation

API specifies behavior of the thread library,
implementation is up to development of the library

Common in UNIX operating systems (Solaris, Linux, Mac
OS X)

Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv[])

{
pthread t tid; /* the thread identifier */
pthread_attr_t attr; /* set of thread attributes */

if (argc !'= 2) {
fprintf (stderr, "usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv([1]) < 0) {

fprintf (stderr,"’%d must be >= 0\n",atoi(argv[1]));
return -1;

}

Pthreads Example (Cont.)

/* get the default attributes */

pthread attr_init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv[i]);
/* wait for the thread to exit */
pthread_join(tid,NULL) ;

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = O;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit (0);
}

Figure 4.9 Multithreaded C program using the Pthreads API.

Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

Figure 4.10 Pthread code for joining ten threads.

Win32 API Multithreaded C Program

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(LPVOID Param)

{

DWORD Upper = *(DWORD*)Param;

for (DWORD i = 0; i <= Upper; i++)
Sum += i;

return 0;

}

int main(int argc, char *argv[])
{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

if (argec != 2) {
fprintf (stderr,"An integer parameter is required\n");
return -1;

}

Param = atoi(argv[1i]);

if (Param < 0) {
fprintf (stderr,"An integer >= 0 is required\n");
return -1;

}

Win32 API Multithreaded C Program
(Cont.)

/* create the thread */
ThreadHandle = CreateThread/(
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadId); /* returns the thread identifier */

if (ThreadHandle !'= NULL) {
/* now wait for the thread to finish */
WaitForSingleObject (ThreadHandle, INFINITE) ;

/* close the thread handle */
CloseHandle (ThreadHandle) ;

printf("sum = %d\n",Sum);

Java Threads

Java threads are managed by the JVM

Typically implemented using the threads model provided by
underlying OS

Java threads may be created by:

Extending Thread class
Implementing the Runnable interface

public interface Runnable

{
}

public abstract void run() ;

Java Multithreaded Program

class Sum

{

private int sum;

public int getSum() {
return sum;

}

public void setSum(int sum) {
this.sum = sum;

}
}

class Summation implements Runnable
private int upper;
private Sum sumValue;

public Summation (int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; 1 <= upper; i++)
sum += 1i;
sumValue.setSum(sum) ;

}

}

Java Multithreaded Program
(Cont.)

public class Driver
{
public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt (args([0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
Sum sumObject = new Sum() ;
int upper = Integer.parselnt (args[0]);
Thread thrd = new Thread (new Summation (upper, sumObject)) ;
thrd.start () ;
try {
thrd.join() ;
System.out.println
("The sum of "+upper+" is "+sumObject.getSum()) ;
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer value>"); }

)

Scheduling Criteria

To Maximize:
CPU utilization — keep the CPU as busy as possible
Throughput — # of processes that complete their execution
per time unit (favour short jobs)

To Minimize:
Turnaround time — amount of time to execute a particular
process
Waiting time — the total amount of time a process has been
waiting in the ready queue

Response time — amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)

First-Come, First-Served (FCFES)
Scheduling

First-Come-First-Serve (FCFS)

Pro: easy to implement
Con: potentially bad for short jobs

Process Burst Time
P, 24 Average waiting time:
P 3 (0 + 24 + 27)/3 = 17
2
P; 3 Average Turnaround time:
(24+27+30)/3 = 27
P, ‘ P, Py

| |
0 24 27 30
If arrive in the order P, , P, , P, Av?Gra+gg f%';}ggzt'gne:

P, P, P, Average Turnaround time:
6 | (30+3+6)/3 =13

Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst.
Use these lengths to schedule the process with the shortest
time

Two schemes:

Non-preemptive — once CPU given to the process it cannot be preempted
until completes its current CPU burst

Preemptive — if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the Shortest-Remaining-Time-First (SRTF)

long [E | SJUFisoptimal
gives minimum average
X waiting time for a given
:m Long set of processes

Non-preemptive SJF: Example

Process

Burst Time Arrival Time

P1

6

0

P2

P3

P4

8
7
3

0
0
0

P4 waiting time: 0
P1 waiting time: 3
P3 waiting time: 9
P2 waiting time: 16

P3 (7) P2 (8)

16

The average waiting time

(0+3+9+16)/4 = 7

Comparing to FCFS

Process Burst Time Arrival Time

P1 6 0

P2 8 0

P3 7 0

P4 3 0

P1 (6) P2 (8) P3 (7) P4 (3)

I I | |
0 6 14 21 24

- . Assume execution order is
P1 waiting time: 0 P1 P2 P3. P4

P2 waiting time: 6

P3 Wa!t!ng t?me: 14 The average waiting time
P4 waiting time: 21 (0+6+14+21)/4 =10.25> 7

