
Fall COMP 3511
Operating Systems

Tutorial and Lab #4

Outline

n  Review Questions

n  Inter-Process Communication or IPC
n  Thread
n  Scheduling

Q. 1

n  Distinguish between data and task parallelism.

n  Data parallelism involves distributing subsets of the
same data across multiple computing cores and
performing the same operation on each core.

n  Task parallelism involves distributing tasks across the
different computing cores where each task is
performing a unique operation.

Q. 2

n  Distinguish between parallelism and concurrency.

n  A parallel system can perform more than one task
simultaneously.

n  A concurrent system supports more than one task by
allowing multiple tasks to make progress.

Q. 3

n  What are the general components of a thread in
Windows?

n  a unique ID
n  a register set that represents the status of the

processor
n  a user stack for user mode
n  a kernel stack for kernel mode
n  a private storage area used by run-time libraries and

dynamic link libraries.

Q. 4

n  List the four major categories of the benefits of multithreaded
programming. Briefly explain each.

n  Four categories: responsiveness, resource sharing,
economy, and utilization of multiprocessor architectures.

n  Responsiveness: a multithreaded program can allow a
program to run even if part of it is blocked.

n  Resource sharing: an application has several different

threads of activity within the same address space. Threads
share the resources of the process

Q. 4 (cont.)

n  List the four major categories of the benefits of multithreaded
programming. Briefly explain each.

n  Economy: it is more economical to create new threads
than new processes.

n  utilization of multiprocessor architectures:
n  A single-threaded process can only execute on one

processor regardless of the number of processors actually
available.

n  Multithreaded programs can run on multiple processors,
taking full utilization of the computing resources, thereby
increasing efficiency.

Q. 5

n  Explain the difference between response time and
turnaround time. These times are both used to
measure the effectiveness of scheduling schemes.

n  Turnaround time is the sum of the periods that a
process is spent waiting to get into memory, waiting in
the ready queue, executing on the CPU, and doing I/O.
Turnaround time essentially measures the amount of
time it takes to execute a process.

n  Response time, on the other hand, is a measure of
the time that elapses between a request and the first
response produced.

Interprocess Communication - IPC

n  Processes within a system may be independent or cooperating!
n  Cooperating process can affect or be affected by other processes,

 including sharing data"
n  Reasons for cooperating processes:"

n  Information sharing"
n  Computation speedup"
n  Modularity"
n  Convenience ""

n  Cooperating processes need interprocess communication (IPC)"
n  Two models of IPC"

n  Shared memory!
n  Message passing!

Communications Models

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

Cooperating Processes

n  Independent process cannot affect or be affected by
 the execution of another process"

n  Cooperating process can affect or be affected by the
 execution of another process"

n  Advantages of process cooperation"
n  Information sharing "
n  Computation speed-up"
n  Modularity"
n  Convenience"

Sockets

n  A socket is defined as an endpoint for communication"
n  Concatenation of IP address and port – a number included

 at start of message packet to differentiate network
 services on a host"

n  The socket 161.25.19.8:1625 refers to port 1625 on host
 161.25.19.8!

n  Communication consists between a pair of sockets"
n  All ports below 1024 are well known, used for standard

 services"
n  Special IP address 127.0.0.1 (loopback) to refer to system

 on which process is running"

Socket Communication

Sockets in Java

n  Three types of sockets"
n  Connection-oriented (TCP)"
n  Connectionless (UDP)"
n  MulticastSocket class– "
data can be sent to multiple "
recipients"

"
n  Consider this “Date” server:"

Remote Procedure Calls

n  Remote procedure call (RPC) abstracts procedure calls between
 processes on networked systems"
n  Again uses ports for service differentiation"

n  Stubs – client-side proxy for the actual procedure on the server"
n  The client-side stub locates the server and marshalls the parameters"
n  The server-side stub receives this message, unpacks the marshalled

 parameters, and performs the procedure on the server"
n  On Windows, stub code compile from specification written in Microsoft

 Interface Definition Language (MIDL)"
n  Data representation handled via External Data Representation (XDL)

 format to account for different architectures"
n  Big-endian and little-endian!

n  Remote communication has more failure scenarios than local"
n  Messages can be delivered exactly once rather than at most once!

n  OS typically provides a rendezvous (or matchmaker) service to
 connect client and server"

Execution of RPC

Thread Libraries

n  Thread library provides programmer with API for
 creating and managing threads"

n  Two primary ways of implementing"
n  Library entirely in user space"
n  Kernel-level library supported by the OS"

Pthreads

n  May be provided either as user-level or kernel-level"
n  A POSIX standard (IEEE 1003.1c) API for thread creation

 and synchronization"
n  Specification, not implementation"
n  API specifies behavior of the thread library,

 implementation is up to development of the library"
n  Common in UNIX operating systems (Solaris, Linux, Mac

 OS X)"
"

Pthreads Example

Pthreads Example (Cont.)

Pthreads Code for Joining 10 Threads

Win32 API Multithreaded C Program

Win32 API Multithreaded C Program
 (Cont.)

Java Threads
n  Java threads are managed by the JVM

n  Typically implemented using the threads model provided by

 underlying OS

n  Java threads may be created by:

n  Extending Thread class
n  Implementing the Runnable interface

Java Multithreaded Program

Java Multithreaded Program
 (Cont.)

Scheduling Criteria
n  To Maximize:

n  CPU utilization – keep the CPU as busy as possible
n  Throughput – # of processes that complete their execution

 per time unit (favour short jobs)
n  To Minimize:

n  Turnaround time – amount of time to execute a particular
 process

n  Waiting time – the total amount of time a process has been
 waiting in the ready queue

n  Response time – amount of time it takes from when a
 request was submitted until the first response is produced,
 not output (for time-sharing environment)

First-Come, First-Served (FCFS)
 Scheduling
n  First-Come-First-Serve (FCFS)
n  Pro: easy to implement
n  Con: potentially bad for short jobs
n  Process Burst Time

 P1 24
 P2 3
 P3 3

P1" P2" P3"

24" 27" 30"0"

Average waiting time:
(0 + 24 + 27)/3 = 17

Average Turnaround time:

 (24+27+30)/3 = 27

n  If arrive in the order P2 , P3 , P1

P1"P3"P2"
6"3" 30"0"

Average waiting time:
(6 + 0 + 3)/3 = 3

Average Turnaround time:

 (30+3+6)/3 = 13

Shortest-Job-First (SJF) Scheduling

n  Associate with each process the length of its next CPU burst.
 Use these lengths to schedule the process with the shortest
 time

n  Two schemes:
n  Non-preemptive – once CPU given to the process it cannot be preempted

 until completes its current CPU burst
n  Preemptive – if a new process arrives with CPU burst length less than

 remaining time of current executing process, preempt. This scheme is
 know as the Shortest-Remaining-Time-First (SRTF)

SJF is optimal
gives minimum average
 waiting time for a given
 set of processes

Long Short

Long Short

Non-preemptive SJF: Example

Process Burst Time Arrival Time

P1 6 0
P2 8 0
P3 7 0
P4 3 0

0 3

P4 (3) P1 (6)

9

P3 (7)

16

P4 waiting time: 0
P1 waiting time: 3
P3 waiting time: 9
P2 waiting time: 16

The average waiting time
 (0+3+9+16)/4 = 7

P2 (8)

24

Comparing to FCFS

0 6

P4 (3) P1 (6)

14

P3 (7)

21

P2 (8)

24

Process Burst Time Arrival Time

P1 6 0

P2 8 0

P3 7 0

P4 3 0

P1 waiting time: 0
P2 waiting time: 6
P3 waiting time: 14
P4 waiting time: 21

The average waiting time
 (0+6+14+21)/4 = 10.25 > 7

Assume execution order is
 P1, P2, P3, P4

