
Fall 2015 COMP 3511
Operating Systems

Lab #3

Outline

n  Operating System Debugging, Generation and
System Boot

n  Review Questions
n  Process Control
n  UNIX fork() and Examples on fork()
n  exec family: execute a program

Operating-System Debugging

n  Debugging is finding and fixing errors, or bugs
n  Usually the OS generates log files containing error information
n  Failure of an application can generate core dump file capturing

 memory of the process
n  Operating system failure can generate crash dump file

 containing kernel memory
n  Beyond crashes, performance tuning can optimize system

 performance
n  Sometimes using trace listings of activities, recorded for

 analysis
n  Profiling is periodic sampling of instruction pointer to look

 for statistical trends

Performance Tuning

n  Improve performance by
 removing bottlenecks

n  OS must provide means
 of computing and
 displaying measures of
 system behavior

n  For example, “top”
 program or Windows
 Task Manager

Operating System Generation

n  Operating systems are designed to run on any of a
 class of machines; the system must be configured
 for each specific computer site

n  SYSGEN program obtains information concerning
 the specific configuration of the hardware system
n  Used to build system-specific compiled kernel or

 system-tuned
n  Can general more efficient code than one general

 kernel

System Boot

n  When power initialized on system, execution starts at a fixed
 memory location
n  Firmware ROM used to hold initial boot code

n  Operating system must be made available to hardware so
 hardware can start it
n  Small piece of code – bootstrap loader, stored in ROM or

 EEPROM locates the kernel, loads it into memory, and starts it
n  Sometimes two-step process where boot block at fixed location

 loaded by ROM code, which loads bootstrap loader from disk
n  Common bootstrap loader, GRUB, allows selection of kernel

 from multiple disks, versions, kernel options
n  Kernel loads and system is then running

Q. 1

n  What is the main difference between a program and
a process?

A program is static (lines of codes stored)

A process is active in execution,

which has a life cycle and can be in different states

Process

program
code

program
counter r e g i s t e r

stack data
section heap

Q. 2

n  Briefly describe the process lifecycle with different
 states.

Q. 3

n  When a process creates a child process, what are the
 four tasks that need to be done?

Creates a new PCB for
the child process

allocate address space
for the child process

copy data from the
parent process

copy I/O state if any

Q. 4

n  What are the two possibilities in terms of the address
 space of a newly created process?

A. The child process has a new program loaded into it

B. The child process has an exact copy of the address space

 of the parent process including program

C. The child process has an exact copy of the address space

 of the parent process including data

D. The child process has an exact copy of the address space

 of the parent process including program and data

Cont.

n  What are the two possibilities in terms of the address
 space of a newly created process?

A. The child process has a new program loaded into it

B. The child process has an exact copy of the address space

 of the parent process including program

C. The child process has an exact copy of the address space

 of the parent process including data

D. The child process has an exact copy of the address space

 of the parent process including program and data

Q. 5

n  Describe the differences between short-term and
long-term scheduling.

n  Short-term scheduling (CPU scheduler) selects which
process should be executed next and allocates CPU

n  Long-term scheduling (job scheduler) determines
which processes should be brought into the ready
queue

Cont.

n  The primary difference is in the frequency of their
execution

n  Short-term scheduling must select a new process quite
often

n  Long-term scheduling is used much less often since it
handles placing jobs in the system and may wait a
while for a job to finish before it admits another one

Fork() example in C
int main(void)	
{	

	pid_t pid = fork();	
	if (pid == -1) { 	

 /* when fork() return -1, an error occurred */	
	 	fprintf(stderr, "Fork Failed");	
	 	exit(EXIT_FAILURE);	
	}	
	else if (pid == 0) { 	

 	
 /* when fork() return 0, we are in the child

 process */	
	 	printf(“Hello from the child process!”);	

 _exit(EXIT_SUCCESS);	
	 }	
		

 else { 	
	 	/* when fork() return a positive integer, we are in the
 parent process */	

 /* the return value of the process id of the
 newly created child process */	

 int status;	
	 	(void) waitpid(pid, &status, 0);	
	 }	

 return EXIT_SUCCESS;	
}	

Q. 6
n  Consider the following code segment:
n  	
 pid_t	
 pid;	
 	

n  	
 pid	
 =	
 fork();	

n  	
 if	
 (pid	
 ==	
 0)	
 	
 {

n  	
 	
 	
 	
 	
 	
 	
 	
 fork();	

n  	
 	
 	
 }	

n  	
 	
 if	
 (pid	
 >	
 0)	
 	
 {

n  	
 	
 	
 	
 	
 	
 	
 	
 fork();	
 fork();

n  	
 	
 }	

n  	
 	
 	
 fork();	
 	
 	
 	
 	

n  Q: How many distinct child processes will be generated?

Q. 6
n  Consider the following code segment:
n  pid_t	
 pid;	
 	

n  	
 pid	
 =	
 fork();	

n  	
 if	
 (pid	
 ==	
 0)	
 	
 {

n  	
 	
 	
 	
 	
 	
 	
 	
 fork();	

n  	
 	
 	
 }	

n  	
 	
 if	
 (pid	
 >	
 0)	
 	
 {

n  	
 	
 	
 	
 	
 	
 	
 	
 fork();	
 fork();

n  	
 	
 }	

n  	
 	
 	
 fork();	
 	
 	
 	
 	

n  Q: How many distinct child processes will be generated?

pid = 0
pid > 0

Process control

n  When UNIX runs a process, it gives each process a
unique number called process ID, or pid.

n  may be a "system'' program (e.g., login, csh)

n  or a program initiated by the user (e.g., textedit, dbxtool
or a user written one).

Process control

n  The UNIX command "ps" will list all current
processes running on your machine with their pid.

n  The C function int getpid() will return the process id
of process that called this function.

fork(): create a new process

n  The fork() system call will spawn a
new child process, which is an
identical process to the parent
except that has a new system
process ID.

n  The process is copied in memory
from the parent and a new process
structure is assigned by the kernel.

fork()

Parent Child

end end

fork()=x

getpid()=y

fork()=0

getpid()=x

fork(): create a new process

n  Synopsis:
n  #include <sys/types.h>

#include <unistd.h>
n  pid_t fork(void);

fork(): create a new process

child parent

Program code

Data

Heap

Stack

Program code

Data

Heap

Stack

fork(): create a new process

child invoke fork() parent

Program code

Data

Heap

Stack

Program code

Data

Heap

Stack

fork(): create a new process

child invoke fork() parent

Program code

Data

Heap

Stack

Program code

Data

Heap

Stack

fork(): create a new process

child invoke fork() parent

Program code

Data

Heap

Stack

Program code

Data

Heap

Stack

fork(): create a new process

child
invoke fork()

parent

Program code

Data

Heap

Stack

Program code

Data

Heap

Stack

a new process structure
is assigned by the kernel

fork(): create a new process

n  Duplicated
n  Address space
n  Global & local

variables
n  Current working

directory
n  Root directory
n  Process resources
n  Resource limits
n  Etc…

n  Different
n  PID
n  Running time
n  Running state
n  Return values from

fork()

Parent & Child:

Return values of fork()

n  Successful

fork()

child

parent

0

Child’s PID

n  Not Successful

fork()

child

parent -1

errno is set to indicate error

Return values of fork()

n  The return value of the function is which discriminates
the two processes of execution.

n  Upon successful completion, fork() return 0 to the
child process and return the process ID of the child
process to the parent process.

n  Otherwise, (pid_t)-1 is returned to the parent
process, no child process is created, and errno is set
to indicate the error.

A simple C program on fork()
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int value = 5;
int main()
{

 pid_t pid;
 pid = fork();
 if (pid == 0) { /* child process */
 value += 15;
 printf(“CHILD: value = %d\n”, value); /* Line A */
 }
 else if (pid > 0) { /* parent process */
 wait (NULL);
 value -=10;
 printf(“PARENT: value = %d\n”, value); /* Line B */
 exit(0);
 }

}

A simple C program on fork()

n  Code can be downloaded from:
n  http://course.cs.ust.hk/comp3511/lab/lab03/testfork.c

n  Compile
n  gcc -o testfork testfork.c

n  Run and understand the result
n  ./testfork

A simple C program on fork()

n  Line A: CHILD: value = 20
n  Line B: PARENT: value = -5

n  Upon fork() system call, the variable “value” is made a
copy in the child process, so it prints out 5+15=20;

n  after wait() system call, the child terminates and its
copy of “value” is destroyed.

n  The parent has “value=5”, so it prints out 5-10= -5.

More example on fork()

n  Consider the program segment with fork() instruction
 below, and suppose each process can run to
 completion, i.e., no interrupt in the middle of a
 process execution.

main()
{
 int x;
 x=0;
 if (fork())
 { x=x+1; /* A part */
 printf(“A produces %2d\n”, x);
 }
 else
 { x=x+1; /* B part */
 printf(“B produces %2d\n”, x);
 }
}

n  Please answer the
 following two questions.

n  Which part runs as the parent
 process and which as the child
 process?

n  Without making any assumption on
 the order of executions, please
 show all possible outputs (suppose
 each process runs to completion,
 i.e. no interruption)

More example on fork()

n  Which part runs as the parent process and which as
 the child process?

n  A part: Parent B part: Child

n  All possible outputs
 A produces 1
 B produces 1
 Or
 B produces 1
 A produces 1

More example on fork()

n  How many processes are created, if the following
 program finishes successfully?
 int main() {
 int i=0;
 for (i=1; i<=100; i++) { fork(); }
 }

n  Answer: 2^100 or 2^100-1.
 This can be deduced by 1 fork() generates 2
 processes,2 fork() generates 4 process and so on

More example on fork()

n  How many processes are created after the following
 program executes?
 int main() {
 if (fork()>0) fork();
 }

n  Answer: 3 (if you do not count the original
 processes, the answer is 2)

exec family: execute a program

n  fork() can only duplicate a process
n  How to execute other programs like “ls”?

//ProgramA.c

int main()
{

 :
 want to execute “ls”

 :
}

exec family: execute a program

n  The exec system call family has the following
members:
n  execl
n  execlp
n  execle
n  execv
n  execvp
n  execve

n  The exec system call family changes the process
image of the calling process.

exec(): execute a file

n  Each of the functions in the exec family replaces the
current process image with a new process image.

n  The new image is constructed from a regular,

executable file called the new process image file.
This file is either an executable object file or a file of
data for an interpreter.

n  There is no return from a successful call to one of

these functions because the calling process image is
overlaid by the new process image.

exec family: execute a program

n  Before calling exec

Process

program
code

ProgramA.c

program
counter

r e g i s t e r

stack data
section heap

PID

//ProgramA.c

int main()
{

 :
//want to execute “ls”
execlp("/bin/ls", "ls", NULL);

 :
}

exec family: execute a program

n  While calling exec

Process

program
counter r e g i s t e r

stack data
section heap

PID

Preserved Reset

program
code

/bin/ls

Change program code
Overwritten by the

 new program

process
is running on a

different program!

//ProgramA.c

int main()
{

 :
//want to execute “ls”
execlp("/bin/ls", "ls", NULL);

 :
}

execlp()

n  execlp() initiates a new program in the same
environment in which it is operating.

n  An executable and arguments are passed to the

function.
n  int execlp(const char *file, const char *arg0, ..., const

char *argn, char * /*NULL*/);
n  e.g. execlp("/bin/ls", "ls", NULL);

n  It will use environment variable PATH to determine
which executable to process. Thus a fully qualified
path name would not have to be used.

execlp()
n  What is the PATH environment variable?

n  The locations for the exec call to search for the
executables.

n  e.g.1 execlp("/bin/ls", "ls", NULL);
n  e.g.2 execlp(“ls”, “ls”, NULL)

 “PATH=/bin;/usr/bin”.

n  Then, the execlp call will only search the specified
two locations, /bin and /usr/bin, for the executable
named “ls”.

n  PATH is stored inside .cshrc

exec family: execute a program

n  There is no return from a successful call!
n  Because the calling process image is overlaid by

the new process image

//ProgramA.c

int main()
{

 :
 //execute “ls”
 execlp("/bin/ls", "ls", NULL);

 printf(“successful!”);
}

exec family: execute a program

n  There is no return from a successful call!
n  Because the calling process image is overlaid by

the new process image

//ProgramA.c

int main()
{

 :
 //execute “ls”
 execlp("/bin/ls", "ls", NULL);

 printf(“successful!”);
}

This WILL NOT be
 printed if “ls” is
successfully executed!

exec family: execute a program

n  There is no return from a successful call!
n  Because the calling process image is overlaid by

the new process image

//ProgramA.c

int main()
{

 :
 //execute “ls”
 execlp("/bin/abc", “abc", NULL);

 printf(“command not found!”);
}

exec family: execute a program

n  There is no return from a successful call!
n  Because the calling process image is overlaid by

the new process image

//ProgramA.c

int main()
{

 :
 //execute “ls”
 execlp("/bin/abc", “abc", NULL);

 printf(“command not found!”);
}

This WILL be printed
if “abc” is NOT
successfully executed!

Useful links

n  For more about fork, exec, and process control:
http://www.yolinux.com/TUTORIALS/ForkExecProcesses.html

n  Use “info” to learn more details from UNIX Manual
Pages for fork, exec, and execlp

