
COMP2611 Fall 2015

The Pipelined Processor

COMP2611: Computer Organization

The Pipelined Processor

2

The Pipelined Processor
Pipeline hazards

- exercises
Re-ordering instructions

- exercises
Forwarding and pipeline stalls

- exercises
Exercises

The Pipelined Processor

3Exercises

Question 1: Suppose that the pipeline (IF, ID, EXE, MEM, WB) is used.
Identify any pipeline hazards in each of the following sequences of
MIPS instructions. Also, specify the type (structural, data or control) of
the hazard, if any, and explain its cause.

(a)
1: sw $s1, 0($t0)
2: add $s2, $s0, $s1
3: add $s2, $s3, $s4
4: add $s1, $s5, $s6

Solution: Both the stage MEM in 1 and the stage IF in 4 need to
access the memory, causing a structural hazard.

The Pipelined Processor

4Exercises

(b)
1: sw $s1, 0($t0)
2: add $s2, $s2, $s1
3: add $s2, $s3, $s3

Solution: No hazards.

The Pipelined Processor

5Exercises

(c)
1: lw $s1, 0($t0)
2: lw $s2, 4($s1)
3: add $s2, $s3, $s3

Solution: There is a data dependency between 1 and 2 via $s1,
causing a data hazard. A load-and-use

The Pipelined Processor

6Exercises

(d)
1: lw $s1, 0($t0)
2: sub $s3, $s4, $s2
3: bne $t0, $t1, target
4: add $s2, $s5, $s6

Solution: There is a branch instruction in 3, so there is a control
hazard.

The Pipelined Processor

7Exercises

(e)
1: lw $s1, 0($t0)
2: sub $s3, $s4, $s2
3: sub $s3, $s1, $t0

Solution: There is a data dependency between 1 and 3 via $s1,
causing a data hazard.

The Pipelined Processor

8

The Pipelined Processor
Pipeline hazards

- exercises
Re-ordering instructions

- exercises
Forwarding and pipeline stalls

- exercises
Exercises

The Pipelined Processor

9Exercises

Question 1: Data dependency can be resolved by re-ordering the
instructions. Do so in the following sequence of instructions in order to
resolve the data dependency in $s1 between the instructions 1 and 2.
1: sub $s1, $t0, $t1
2: add $s2, $s0, $s1
3: add $s5, $s3, $s4
4: add $s5, $s6, $s6

Solution:
#note: two pipeline stalls are needed
1: sub $s1, $t0, $t1
2: add $s5, $s3, $s4
3: add $s5, $s6, $s6
4: add $s2, $s0, $s1

The Pipelined Processor

10

The Pipelined Processor
Pipeline hazards

- exercises
Re-ordering instructions

- exercises
Forwarding and pipeline stalls

- exercises
Exercises

The Pipelined Processor

11Exercises

Question 1: Suppose that we execute the following instruction
sequence in the pipeline, and it uses the forwarding of the output of
the ALU to the inputs of the ALU in the next instruction. Fill in the
table below with the appropriate pipeline stages (IF, ID, EXE, MEM,
WB) or bubbles (BUB).

Solution:
sub $s1, $t0, $t1 IF ID EXE MEM WB
add $s2, $s0, $s1 IF ID EXE MEM WB
add $s5, $s3, $s4 IF ID EXE MEM WB

add $s5, $s6, $s2 IF ID EXE MEM WB

sub $s1, $t0, $t1 IF ID EXE MEM WB
add $s2, $s0, $s1
add $s5, $s3, $s4

add $s5, $s6, $s2

The Pipelined Processor

12Exercises

Question 2: Suppose that we execute the following instruction
sequence in the pipeline. The pipeline uses no forwarding, register
writes in the first half of the cycle and register reads in the second
half. Fill in the table below with the appropriate pipeline stages (IF, ID,
EXE, MEM, WB) or bubbles (BUB).

Solution:
sub $s1, $t0, $t1 IF ID EXE MEM WB

lw $s2, 0($s1) BUB BUB IF ID EXE MEM WB

add $s5, $s3, $s4 IF ID EXE MEM WB

add $s7, $s6, $s5 BUB BUB IF ID EXE MEM WB

sub $s1, $t0, $t1 IF ID EXE MEM WB

lw $s2, 0($s1)

add $s5, $s3, $s4

add $s7, $s6, $s5

The Pipelined Processor

13

The Pipelined Processor
Pipeline hazards

- exercises
Re-ordering instructions

- exercises
Forwarding and pipeline stalls

- exercises
Exercises

The Pipelined Processor

14Exercises

Question 1: Write down a sequence of 3 MIPS instructions that
generates a control hazard and explain its cause(s).

Solution:

sw $s0, 4($t0)

beq $s0, $zero, IsZero
add $s1, $s0, $s1

The Pipelined Processor

15Exercises

Question 2: Write down a sequence of 3 MIPS instructions that
generates 2 data hazards and explain their causes.

Solution:

lw $s0, 4($t0)
add $s1, $s0, $s1
sw $s1, 0($t1)

The Pipelined Processor

16Exercises

Question 3: Suppose that we execute the following instruction
sequence in the pipeline. The pipeline uses no forwarding, register
writes in the first half of the cycle, register reads in the second half
and a separate memory for data and instructions. Fill in the table
below with the appropriate pipeline stages (IF, ID, EXE, MEM, WB) or
bubbles (BUB).
sub $s1, $t0, $t1 IF ID EXE MEM WB
lw $s2, 0($s1)
add $s5, $s3, $s4
add $s7, $s6, $s5

sub $s1, $t0, $t1 IF ID EXE MEM WB
lw $s2, 0($s1) BUB BUB IF ID EXE MEM WB
add $s5, $s3, $s4 IF ID EXE MEM WB
add $s7, $s6, $s5 BUB BUB IF ID EXE MEM WB

The Pipelined Processor

17Exercises

Question 4: Suppose that we execute the following instruction
sequence in the pipeline. The pipeline uses forwarding (output of ALU
to input of the ALU of next instruction), register writes in the first half
of the cycle, register reads in the second half and a separate memory
for data and instructions. Fill in the table below with the appropriate
pipeline stages (IF, ID, EXE, MEM, WB) or bubbles (BUB).
lw $s1, 4($s0) IF ID EXE MEM WB
add $s2, $s3, $s4
add $s5, $s1, $s2
add $s7, $s5, $s2

lw $s1, 4($s0) IF ID EXE MEM WB
add $s2, $s3, $s4 IF ID EXE MEM WB
add $s5, $s1, $s2 BUB IF ID EXE MEM WB

add $s7, $s5, $s2 IF ID EXE MEM WB

