COMP2611: Computer Organization

Booth Algorithm and Division

COMP 2611 Fall 2015

Booth Algorithm and Division

Introduction of Booth algorithm

- Examples

Division

- Examples

Exercises

Booth's Algorithm for Signed Multiplication

- If the multiplicand or multiplier is negative, we first negate it to get a positive number
- Use any one of the existing methods to compute the product of two positive numbers
- The product should be negated if the original signs of the operands disagree
- Booth's algorithm: a more efficient and elegant algorithm for the multiplication of signed numbers

\Box Let's consider multiplying 0010₂ and 0110₂

	Convent	tion	Booth	L	
Multiplicand		0010		0010	
Multiplier	х	0110		0110	\geq
	+	0000	+	0000	shift
	+	0010	-	0010 🚩	subtract
	+	0010	+	0000	shift
	+	0000	+	0010	add
Product	=	0001100	=	0001100	

Idea of Booth Algorithm

- □ Looks at two bits of multiplier at a time from right to left
- □ Assume that shifts are much faster than adds
- □ Basic idea to speed up the calculation: avoid unnecessary additions

 $\Box \text{ Multiplier} = 00111100$

o i.e. $i_1 = 2$, $i_2 = 5$

$\square M \times 00111100 = 2^{2} * M + 2^{3} * M + 2^{4} * M + 2^{5} * M$ = 2² * (2⁰ + 2¹ + 2² + 2³) * M = 2² * (2⁴ - 1) * M = (2⁶ - 2²) * M

□ Running the Booth's algorithm by scanning multiplier from right to left

- \odot Iteration 0, pattern = 00
- \odot Iteration 1, pattern = 00
- \odot Iteration 2, pattern = 10
- \odot Iteration 3, pattern = 11
- \odot Iteration 4, pattern = 11
- \odot Iteration 5, pattern = 11
- Iteration 6, pattern = 01

To find out why, do the math:

Consider a series of ones in the multiplier (from bit i₁ to bit i₂)
M: multiplicand; multiplying M with this series of ones results in Prod = (2ⁱ¹) * M + (2ⁱ¹⁺¹) * M + ... + (2ⁱ²) * M = (2ⁱ²⁺¹-2ⁱ¹) * M

□ Thus, (i_2-i_1) adds in revised algorithm \Rightarrow one add and one subtract

Detailed algorithm:

□ We look at 2 bits at a time (current bit and previous one):

- 00: middle of a string of 0's; no arithmetic operation
- 01: end of a string of 1's; add M to the left half of product
- 10: start of a string of 1's; subtract M from the left half of product
- 11: middle of a string of 1's- no arithmetic operations
- □ Previous bit is set to 0 for the first iteration to form a two-bit pattern

□Multiply 14 with -5 using 5-bit numbers (10-bit result)

Booth Algorithm and Division

Review of Booth algorithm - Examples

Division

- Examples

Exercises

Division Algorithm – Improved Version

Arithmetic for Computers

Answer the following in binary form (numbers are in base 10, convert to 4-bit binary numbers)

Divide 10 by 3

Divide 5 by 7

Booth Algorithm and Division

Introduction of Booth algorithm

- Examples

Division

- Examples

Exercises

Answer the following in binary form (numbers are in base 10, convert to 4-bit binary numbers)

□Multiply -2 by -7 (result in 8-bit binary numbers)

□Multiply -8 by 4 (result in 10-bit binary numbers as 4-bit multiplicand not enough)

Divide -7 by 2

Divide -8 by -2

□Multiply -2 by -7 (result in 8-bit binary numbers) Solution: **0000 1110**

Step	Multiplicand	Action	Multiplier
0	1110	Initialization	0000 1001 0
1	1110	10: subtract multiplicand	0000 + 0010 = 0010 0010 1001 0
		Shift right	0001 0100 1
2	1110	01: add multiplicand	0001 + 1110 = 1111 1111 0100 1
		Shift right	1111 1010 0
3	1110	00: No operation Shift right	1111 1101 0
4	1110	10: subtract multiplicand Shift right	1111 + 0010 = 0001 0001 1101 0 0000 1110 1

Exercises

□Multiply -8 by 4 (result in 10-bit binary numbers as 4-bit multiplicand not enough) Solution: 11111 00000

Step	Multiplicand	Action	Multiplier
0	11000	Initialization	00000 00100 0
1	11000	00: no operation	00000 00100 0
		Shift right	00000 00010 0
2	11000	00: no operation	00000 00010 0
		Shift right	00000 00001 0
3	11000	10: subtract multiplicand	00000 + 01000 = 01000 01000 00001 0
		Shift right	00100 00000 1
4	11000	01: add multiplicand	00100 + 11000 = 11100 11100 00000 1
		Shift right	11110 00000 0
5	11000	00: no operation Shift right	11110 00000 0 11111 00000 0

□Divide -7 by 2 => Q = (-) 0011 = 1101, R= 0001

Step	Divisor (D)	Remainder (R)	Remark
0	0010	0000 0111 0000 1110	Initial state R = R << 1
1	0010	1110 1110 0000 1110 0001 1100	Left(R) = Left(R) - D Undo R = R << 1, R0 = 0
2	0010	1111 1100 0001 1100 0011 1000	Left(R) = Left(R) - D Undo R = R << 1, R0 = 0
3	0010	0001 1000 0011 0001	Left(R) = Left(R) – D R = R << 1, R0 = 1
4	0010	0001 0001 0010 0011	Left(R) = Left(R) - D R = R << 1, R0 = 1
Extra		0001 0011	Left(R) = Left(R) >> 1

□Divide -8 by -2 => Q = 0100, R= 0000

Step	Divisor (D)	Remainder (R)	Remark
0	0010	0000 1000 0001 0000	Initial state R = R << 1
1	0010	1111 0000 0001 0000 0010 0000	Left(R) = Left(R) - D Undo R = R << 1, R0 = 0
2	0010	0000 0000 0000 0001	Left(R) = Left(R) - D R = R << 1, R0 = 1
3	0010	1110 0001 0000 0001 0000 0010	Left(R) = Left(R) - D undo R = R << 1, R0 = 0
4	0010	1110 0010 0000 0010 0000 0100	Left(R) = Left(R) – D undo R = R << 1, R0 = 0
Extra		0000 0100	Left(R) = Left(R) >> 1