
COMP 2611 Fall 2015

11

Booth Algorithm and Division

COMP2611: Computer Organization

Booth Algorithm and Division

22

Booth Algorithm and Division
Introduction of Booth algorithm

- Examples
Division

- Examples
Exercises

Booth Algorithm and Division

3Booth’s Algorithm for Signed Multiplication

q If the multiplicand or multiplier is negative, we first negate it to get a
positive number

q Use any one of the existing methods to compute the product of two
positive numbers

q The product should be negated if the original signs of the operands
disagree

q Booth’s algorithm: a more efficient and elegant algorithm for the
multiplication of signed numbers

Booth Algorithm and Division

4Motivation behind Booth Algorithm

q Let’s consider multiplying 00102 and 01102

Convention Booth
Multiplicand 0010 0010

Multiplier x 0110 0110
+ 0000 + 0000
+ 0010 - 0010
+ 0010 + 0000
+ 0000 + 0010

Product = 0001100 = 0001100

Idea of Booth Algorithm
q Looks at two bits of multiplier at a time from right to left
q Assume that shifts are much faster than adds
q Basic idea to speed up the calculation: avoid unnecessary additions

shift
subtract
shift
add

Booth Algorithm and Division

5Example to Explain the Math

q Multiplier = 00111100
❍ i.e. i1 = 2, i2 = 5

q M x 00111100 = 22 *M + 23 *M + 24 *M + 25 *M
= 22 * (20 + 21 + 22 + 23) *M
= 22 * (24 - 1) *M
= (26 - 22) *M

q Running the Booth’s algorithm by scanning multiplier from right to left
❍ Iteration 0, pattern = 00
❍ Iteration 1, pattern = 00
❍ Iteration 2, pattern = 10
❍ Iteration 3, pattern = 11
❍ Iteration 4, pattern = 11
❍ Iteration 5, pattern = 11
❍ Iteration 6, pattern = 01

Booth Algorithm and Division

6Booth’s Algorithm

To find out why, do the math:
q Consider a series of ones in the multiplier (from bit i1 to bit i2)
q M: multiplicand; multiplying M with this series of ones results in

Prod = (2i1)* M + (2i1+1)* M + … + (2i2)* M
= (2i2+1–2i1)* M

q Thus, (i2-i1) adds in revised algorithm ⇒ one add and one subtract

Detailed algorithm:
q We look at 2 bits at a time (current bit and previous one):

❍ 00: middle of a string of 0’s; no arithmetic operation
❍ 01: end of a string of 1’s; add M to the left half of product
❍ 10: start of a string of 1’s; subtract M from the left half of product
❍ 11: middle of a string of 1’s- no arithmetic operations

q Previous bit is set to 0 for the first iteration to form a two-bit pattern

Booth Algorithm and Division

7Booth’s Algorithm: Examples

qMultiply 14 with -5 using 5-bit numbers (10-bit result)

Booth Algorithm and Division

88

Booth Algorithm and Division
Review of Booth algorithm

- Examples
Division

- Examples
Exercises

Arithmetic for Computers

9Division Algorithm – Improved Version

Done. Shift left half of Remainder right 1 bit

Test Remainder

3a. Shift the Remainder register to the
left, setting the new rightmost bit to 1

32nd repetition?

Start

Remainder < 0

No: < 32 repetitions

Yes: 32 repetitions

3b. Restore the original value by adding
the Divisor register to the left half of the
Remainder register and place the sum
in the left half of the Remainder register.
Also shift the Remainder register to the
left, setting the new rightmost bit to 0

2. Subtract the Divisor register from the
left half of the Remainder register and
place the result in the left half of the

Remainder register

Remainder 0

1. Shift the Remainder register left 1 bit

–>

Booth Algorithm and Division

10Division: Examples

Answer the following in binary form (numbers are in base 10 , convert to
4-bit binary numbers)

qDivide 10 by 3

qDivide 5 by 7

Booth Algorithm and Division

1111

Booth Algorithm and Division
Introduction of Booth algorithm

- Examples
Division

- Examples
Exercises

Booth Algorithm and Division

12Exercises

Answer the following in binary form (numbers are in base 10 , convert to
4-bit binary numbers)

qMultiply -2 by -7 (result in 8-bit binary numbers)

qMultiply -8 by 4 (result in 10-bit binary numbers as 4-bit multiplicand
not enough)

qDivide -7 by 2

qDivide -8 by -2

Booth Algorithm and Division

13Exercises

qMultiply -2 by -7 (result in 8-bit binary numbers)
Solution: 0000 1110
Step Multiplicand Action Multiplier

0 1110 Initialization 0000 1001 0

1 1110 10: subtract multiplicand

Shift right

0000 + 0010 = 0010
0010 1001 0

0001 0100 1
2 1110 01: add multiplicand

Shift right

0001 + 1110 = 1111
1111 0100 1

1111 1010 0
3 1110 00: No operation

Shift right
1111 1101 0

4 1110 10: subtract multiplicand

Shift right

1111 + 0010 = 0001
0001 1101 0
0000 1110 1

Booth Algorithm and Division

14Exercises
qMultiply -8 by 4 (result in 10-bit binary numbers as 4-bit multiplicand not enough)
Solution: 11111 00000
Step Multiplicand Action Multiplier

0 11000 Initialization 00000 00100 0

1 11000 00: no operation

Shift right

00000 00100 0

00000 00010 0

2 11000 00: no operation

Shift right

00000 00010 0

00000 00001 0
3 11000 10: subtract multiplicand

Shift right

00000 + 01000 = 01000
01000 00001 0
00100 00000 1

4 11000 01: add multiplicand

Shift right

00100 + 11000 = 11100
11100 00000 1
11110 00000 0

5 11000 00: no operation
Shift right

11110 00000 0
11111 00000 0

Booth Algorithm and Division

15Exercises

qDivide -7 by 2 => Q = (-) 0011 = 1101, R= 0001

Step Divisor (D) Remainder (R) Remark

0 0010 0000 0111
0000 1110

Initial state
R = R << 1

1 0010 1110 1110
0000 1110
0001 1100

Left(R) = Left(R) – D
Undo
R = R << 1, R0 = 0

2 0010 1111 1100
0001 1100
0011 1000

Left(R) = Left(R) – D
Undo
R = R << 1, R0 = 0

3 0010 0001 1000
0011 0001

Left(R) = Left(R) – D
R = R << 1, R0 = 1

4 0010 0001 0001
0010 0011

Left(R) = Left(R) – D
R = R << 1, R0 = 1

Extra 0001 0011 Left(R) = Left(R) >> 1

Booth Algorithm and Division

16Exercises

qDivide -8 by -2 => Q = 0100, R= 0000

Step Divisor (D) Remainder (R) Remark

0 0010 0000 1000
0001 0000

Initial state
R = R << 1

1 0010 1111 0000
0001 0000
0010 0000

Left(R) = Left(R) – D
Undo
R = R << 1, R0 = 0

2 0010 0000 0000
0000 0001

Left(R) = Left(R) – D
R = R << 1, R0 = 1

3 0010 1110 0001
0000 0001
0000 0010

Left(R) = Left(R) – D
undo
R = R << 1, R0 = 0

4 0010 1110 0010
0000 0010
0000 0100

Left(R) = Left(R) – D
undo
R = R << 1, R0 = 0

Extra 0000 0100 Left(R) = Left(R) >> 1

