COMP2611: Computer Organization

Booth Algorithm and Division

Booth Algorithm and Division

Introduction of Booth algorithm

- Examples

Division

- Examples

Exercises

- If the multiplicand or multiplier is negative, we first negate it to get a positive number

U Use any one of the existing methods to compute the product of two positive numbers

- The product should be negated if the original signs of the operands disagree

Booth's algorithm: a more efficient and elegant algorithm for the multiplication of signed numbers

Motivation behind Booth Algorithm

Let's consider multiplying 0010_{2} and 0110_{2}

Convention Booth

Multiplicand		0010		0010	
Multiplier	x	0110		(0110	
	+	0000	+	0000	shift
	+	0010	-	0010	subtract
	$+$	0010	+	0000 -	shift
	+	0000	+	0010	add
Product	=	0001100	$=$	0001100	

Idea of Booth Algorithm

Looks at two bits of multiplier at a time from right to left

- Assume that shifts are much faster than adds
- Basic idea to speed up the calculation: avoid unnecessary additions
- Multiplier $=00111100$
o i.e. $i_{1}=2, i_{2}=5$
- $M \times 00111100=2^{2} * M+2^{3} * M+2^{4} * M+2^{5} * M$

$$
\begin{aligned}
& =2^{2} *\left(2^{0}+2^{1}+2^{2}+2^{3}\right) * M \\
& =2^{2} *\left(2^{4}-1\right) * M \\
& =\left(2^{6}-2^{2}\right) \star M
\end{aligned}
$$

- Running the Booth's algorithm by scanning multiplier from right to left
o Iteration 0, pattern $=00$
o Iteration 1, pattern $=00$
o Iteration 2, pattern = 10
o Iteration 3, pattern $=11$
o Iteration 4, pattern $=11$
o Iteration 5 , pattern $=11$
o Iteration 6, pattern $=01$

Booth's Algorithm

To find out why, do the math:

\square Consider a series of ones in the multiplier (from bit i_{1} to bit i_{2})

- M: multiplicand; multiplying M with this series of ones results in

$$
\begin{aligned}
\text { Prod } & =\left(2^{i 1}\right) * M+\left(2^{i 1+1}\right) * M+\ldots+\left(2^{i 2}\right) * M \\
& =\left(2^{i 2+1}-2^{i 1}\right) * M
\end{aligned}
$$

\square Thus, $\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)$ adds in revised algorithm \Rightarrow one add and one subtract

Detailed algorithm:

- We look at 2 bits at a time (current bit and previous one):
o 00: middle of a string of 0's; no arithmetic operation
o 01: end of a string of 1 's; add M to the left half of product
o 10: start of a string of 1 's; subtract M from the left half of product
o 11: middle of a string of 1 's- no arithmetic operations
- Previous bit is set to 0 for the first iteration to form a two-bit pattern

Booth's Algorithm: Examples

-Multiply 14 with -5 using 5 -bit numbers (10-bit result)

Booth Algorithm and Division

Review of Booth algorithm

- Examples

Division

- Examples

Exercises

Answer the following in binary form (numbers are in base 10 , convert to 4-bit binary numbers)
aDivide 10 by 3
aDivide 5 by 7

Booth Algorithm and Division

Introduction of Booth algorithm
- Examples
Division
- Examples

Exercises

Answer the following in binary form (numbers are in base 10 , convert to 4-bit binary numbers)
-Multiply -2 by -7 (result in 8 -bit binary numbers)
-Multiply -8 by 4 (result in 10-bit binary numbers as 4 -bit multiplicand not enough)
aDivide -7 by 2
-Divide -8 by -2
-Multiply -2 by -7 (result in 8-bit binary numbers)
Solution: 00001110
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Step } & \text { Multiplicand } & \text { Action } & \text { Multiplier } \\
\hline 0 & 1110 & \text { Initialization } & 000010010 \\
\hline 1 & 1110 & \text { 10: subtract multiplicand } & \begin{array}{l}0000+0010=0010 \\
001010010 \\
000101001\end{array} \\
\hline 2 & 1110 & \text { Shift right } & \text { 01: add multiplicand }\end{array}
$$ \begin{array}{l}0001+1110=1111

111101001

Shift right\end{array}\right]\)| 00: No operation |
| :--- |
| Shift right |\quad| $10:$ subtract multiplicand |
| :--- |
| Shift right | | 11111110100 |
| :--- |
| $000111010=0001$ |
| $\mathbf{0 0 0 0 1 1 0 1 0} 1$ |

aMultiply -8 by 4 (result in 10-bit binary numbers as 4 -bit multiplicand not enough)
Solution: 1111100000

Step	Multiplicand	Action	Multiplier
0	11000	Initialization	00000001000
1	11000	00: no operation Shift right	00000001000 00000000100
2	11000	00: no operation Shift right	00000000100 00000000010
3	11000	$10:$ subtract multiplicand Shift right	$00000+01000=01000$ 01000000010 00100000001
4	11000	01: add multiplicand Shift right	$00100+11000=11100$ 11100000001 11110000000
5	11000	00: no operation Shift right	11110000000 $\mathbf{1 1 1 1 1 0 0 0 0 0} 0$

aDivide -7 by $2=>Q=(-) 0011=1101, R=0001$

Step	Divisor (D)	Remainder (R)	Remark
0	0010	$\begin{aligned} & 00000111 \\ & 00001110 \end{aligned}$	Initial state $R=R \ll 1$
1	0010	$\begin{aligned} & 11101110 \\ & 00001110 \\ & 00011100 \end{aligned}$	$\begin{aligned} & \operatorname{Left}(R)=\operatorname{Left}(R)-D \\ & \operatorname{Undo} \\ & R=R \ll 1, R 0=0 \end{aligned}$
2	0010	$\begin{aligned} & 11111100 \\ & 00011100 \\ & 00111000 \end{aligned}$	$\begin{aligned} & \text { Left(} R \text {) }=\operatorname{Left}(R)-D \\ & \text { Undo } \\ & R=R \ll 1, R 0=0 \end{aligned}$
3	0010	$\begin{aligned} & 00011000 \\ & 00110001 \end{aligned}$	$\begin{aligned} & \operatorname{Left}(R)=\operatorname{Left}(R)-D \\ & R=R \ll 1, R 0=1 \end{aligned}$
4	0010	$\begin{aligned} & \hline 00010001 \\ & 00100011 \end{aligned}$	$\begin{aligned} & \text { Left(} \mathrm{R})=\operatorname{Left}(\mathrm{R})-\mathrm{D} \\ & \mathrm{R}=\mathrm{R} \ll 1, \mathrm{RO}=1 \end{aligned}$
Extra		00010011	$\operatorname{Left}(\mathrm{R})=\operatorname{Left}(\mathrm{R}) \gg 1$

-Divide -8 by $-2=>Q=0100, R=0000$

Step	Divisor (D)	Remainder (R)	Remark
0	0010	$\begin{aligned} & 00001000 \\ & 00010000 \end{aligned}$	Initial state $R=R \ll 1$
1	0010	$\begin{aligned} & 11110000 \\ & 00010000 \\ & 00100000 \end{aligned}$	$\begin{aligned} & \operatorname{Left}(R)=\operatorname{Left}(R)-D \\ & \text { Undo } \\ & R=R \ll 1, R 0=0 \end{aligned}$
2	0010	$\begin{aligned} & 00000000 \\ & 00000001 \end{aligned}$	$\begin{aligned} & \operatorname{Left}(R)=\operatorname{Left}(R)-D \\ & R=R \ll 1, R 0=1 \end{aligned}$
3	0010	$\begin{aligned} & 11100001 \\ & 00000001 \\ & 00000010 \end{aligned}$	$\begin{aligned} & \operatorname{Left}(R)=\operatorname{Left}(R)-D \\ & \text { undo } \\ & R=R \ll 1, R 0=0 \end{aligned}$
4	0010	$\begin{aligned} & 11100010 \\ & 00000010 \\ & 00000100 \end{aligned}$	$\begin{aligned} & \operatorname{Left}(R)=\operatorname{Left}(R)-D \\ & \text { undo } \\ & R=R \ll 1, R 0=0 \end{aligned}$
Extra		00000100	$\operatorname{Left}(\mathrm{R})=\operatorname{Left}(\mathrm{R}) \gg 1$

