
COMP2611 Fall 2015

COMP2611: Computer Organization

MIPS Recursion

MIPS recursion

2

MIPS recursion
Recursive procedures

- examples
Exercises

MIPS recursion

3A Recap on Stack: supporting procedures in MIPS

q Since procedures are like small programs themselves, they may
need to use the registers, and they may also call other
procedures (nested calls)
q If we don’t save some of the values stored in the registers, they

will be wiped each time we call a new procedure
q In MIPS, we need to save the registers by ourselves
q The perfect place for this is called a stack

• a memory accessible only from the top (Last In First Out, LIFO)
• placing things on the stack is called push
• removing them is called pop

q push and pop are simply storing and loading words to and
from a specific location in the memory pointed to by the stack
pointer $sp which always points to top of the stack

MIPS Recursive Procedure

q The Caller to a nested function call performs the same steps as to a
simple function call. E.g. jal nestedProcedureAddress

q The nested callee (each callee becomes a caller for its next callee)

Within each callee
• Pushes preserved registers ($s0 - $s8), argument registers
($a0 - $a1) onto stack if changed within callee

• Pushes temporary registers ($t0 - $t9) onto stack if changed
within callee and needed after the call

• Pushes $ra for its caller into stack
• Performs the recursive procedure by jal nestedProcedureAddress

4

MIPS recursion

MIPS Recursive Procedure

After returning to each caller
• Pops the preserved registers, argument registers, and temporary

registers from stack if there is any
• Pops its $ra
• Puts return results in $v0 - $v1

• Invokes jr $ra to go back to the caller

5

MIPS recursion

MIPS recursion

6Exercises

Question 1: Translate the following C++ recursive function into a
MIPS recursive function.

int multiply(int p1, int p2) {

if (p2 == 0)

return 0;

return p1 + multiply(p1, p2 – 1);

}

MIPS recursion

7Exercises

Question 2: Translate the following C++ recursive function into a
MIPS recursive function.

int fact(int p) {

if (p < 1)

return 1;

else

return (p * fact(p-1));

}

MIPS recursion

8Exercises

Question 3: Translate the following C++ recursive function into a
MIPS recursive function.

int fib(int n) {

if (n == 0)

return 0;

if (n == 1)

return 1;

return (fib(n-1) + fib(n-2));

}

MIPS recursion

9

MIPS recursion
Recursive procedures

- examples
Exercises

MIPS recursion

10Exercises

Exercise 1: Translate the following C++ recursive function into a MIPS
recursive function.
int sum(int x) {

if (x == 0)

return 0;

return x + sum(x – 1);

}

MIPS recursion

11Exercises

Solution to exercise 1:
sum: beq $a0, $zero, IsZero

addi $sp, $sp, -8

sw $ra, 0($sp)

sw $a0, 4($sp)

addi $a0, $a0, -1

jal sum

lw $ra, 0($sp)

lw $a0, 4($sp)

addi $sp, $sp, 8

add $v0, $v0, $a0

jr $ra

IsZero: addi $v0, $zero, 0

jr $ra

