
COMP2611 Fall 2015

COMP2611: Computer Organization

MIPS Procedure

MIPS procedures

2

MIPS procedures
32-bit Immediate Operands

- exercises
Simple MIPS procedures

- exercises
Exercises

MIPS procedures

3A Recap on 32-bit Immediate operands

q Constants are frequently short and fit into 16-bit field
q But sometimes they are bigger than 16 bits, e.g. 32-bit constant

q lui (“load upper immediate”)
q e.g. lui reg, constant
q set the upper 16 bits of register reg to the 16-bit value specified

in constant
q Set the lower 16 bits of register reg to zeros

q addi will sign-extend the 16-immediate operand especially for
negative numbers
q For unsigned immediate

q Advisable to use ori
q For both signed and unsigned immediate

MIPS procedures

4Exercises

Question 1: Write down the shortest sequence of MIPS instructions for
the following C++ codes, assuming each variable is stored in a
different register (you name it).

b = a + 0x37cf0010;

MIPS procedures

5Exercises

Question 2: Write down the shortest sequence of MIPS instructions for
the following C++ codes, assuming each variable is stored in a
different register (you name it).

b = a + 0x37cff346;

How a 16-bit immediate is extended

q Arithmetic instructions (e.g. addi, addiu): always sign extend (deem
zero-extend as sign-extend for unsigned number)

q Load/store instructions (e.g. lb, lbu): always sign extend
q Logical instructions (e.g. ori, andi): always zero extend
q Set instructions (e.g. slti, sltiu): sign extend
q shift instructions (e.g. srl): always sign extend

6

MIPS procedures

MIPS procedures

7

MIPS procedures
32-bit Immediate Operands

- exercises
Simple MIPS procedures

- exercises
Exercises

A Recap on MIPS Procedures

q The Caller
q Puts function arguments in $a0 - $a3 before invoking jal
q Pushes arguments registers ($a0 - $a3), temporary registers

($t0 - $t9) onto stack if needed after the call
q jal ProcedureAddress

• The jal saves the return address which is (PC + 4) in $ra
• Then, jump to address specified by ProcedureAddress

q Picks up the return values from $v0 - $v1

q The Callee
q Pushes preserved registers ($s0 - $s8), argument registers
($a0 - $a1) onto stack if they are changed within callee

q Performs the procedure
q Pops the preserved registers if any from stack
q Puts up to two return results in $v0 - $v1 if there is any
q Invokes jr $ra to go back to the Caller

8

MIPS procedures

MIPS procedures

9A Recap on Stack: supporting procedures in MIPS

q Since procedures are like small programs themselves, they may
need to use the registers, and they may also call other
procedures (nested calls)
q If we don’t save some of the values stored in the registers, they

will be wiped each time we call a new procedure
q In MIPS, we need to save the registers by ourselves
q The perfect place for this is called a stack

• a memory accessible only from the top (Last In First Out, LIFO)
• placing things on the stack is called push
• removing them is called pop

q push and pop are simply storing and loading words to and
from a specific location in the memory pointed to by the stack
pointer $sp which always points to top of the stack

MIPS procedures

10Exercises

Question 1: Translate the following C++ function into a MIPS function,
using the registers $a0 and $a1 for its parameters and the register
$v0 for its return value.

int equal(int p1, int p2) {

if (p1 == p2)

return 1;

return 0;

}

MIPS procedures

11Exercises

Question 2: Write down the MIPS instructions that make the following
call to the C++ function in the previous exercise, assuming the
variable b is stored in the register $s0.

int b = equal(3, 4);

MIPS procedures

12Exercises

Question 4: The following C++ function takes as inputs the base
address of an int array A and returns the minimum value in A. Using
the registers $a0 and $a1 as arguments to the function, $v0 as
returned value, $s0 as base address of A and $s1 as the size of A,
translate the C++ function into a MIPS function
int minArray(int A[], int arraySize) {

int min = A[0];

int i = 1;

while(i < arraySize) {

if(min < A[i])

min = A[i];

i++;

}

return min;

}

MIPS procedures

13

MIPS procedures
MIPS immediate numbers

- exercises
Simple MIPS procedures

- exercises
Exercises

MIPS procedures

14Exercises

Question 1: Write down the shortest sequence of MIPS instructions for
the following C++ codes, assuming each variable is stored in a
different register (you name it).

b = a + 60000;

Solution:

addi $s0, $s1, 60000 #$s0 and $s1 store b and a
respectively

MIPS procedures

15Exercises

Question 2:
void saveElement(int a[], int x) {

a[x] = x;

}

Translate the above C++ function into a MIPS function, assuming the
registers $a0 and $a1 store the parameters. $s0 is the only extra
register that can be used inside your function. The stack can also be
used. Your function must work for the following MIPS sequence of
calls to it.

la $a0, list1 #assuming an array list1 is already defined

addi $a1, $s0, 0

jal saveElement

addi $a1, $s0, 1

jal saveElement

MIPS procedures

16Exercises

Solution to Question 2:
saveElement: addi $sp, $sp, -4

sw $s0, 0($sp)

sll $s0, $a1, 2

add $s0, $s0, $a0

sw $a1, 0($s0)

lw $s0, 0($sp)

addi $sp, $sp, 4

jr $ra

