COMP2611: Computer Organization

Booth Algorithm and Division

Booth Algorithm and Division

Introduction of Booth algorithm

- Examples

Division

- Examples

Exercises

Booth's Algorithm for Signed Multiplication

- ☐ If the multiplicand or multiplier is negative, we first negate it to get a positive number
- ☐ Use any one of the existing methods to compute the product of two positive numbers
- ☐ The product should be negated if the original signs of the operands disagree
- **Booth's algorithm**: a more efficient and elegant algorithm for the multiplication of signed numbers

□ Let's consider multiplying 0010₂ and 0110₂

	Convention		Booth		
Multiplicand		0010		0010	
Multiplier	x	0110		0110	
	+	0000	+	0000	shift
	+	0010	-	0010	subtract
	+	0010	+	0000	shift
	+	0000	+	0010	add
Product	=	0001100	=	0001100	

Idea of Booth Algorithm

- □ Looks at two bits of multiplier at a time from right to left
- ☐ Assume that shifts are much faster than adds
- ☐ Basic idea to speed up the calculation: avoid unnecessary additions

- ☐ Multiplier = 00111100
 - o i.e. $i_1 = 2$, $i_2 = 5$

$$\square M \times 00111100 = 2^{2} *M + 2^{3} *M + 2^{4} *M + 2^{5} *M$$

$$= 2^{2} * (2^{0} + 2^{1} + 2^{2} + 2^{3}) *M$$

$$= 2^{2} * (2^{4} - 1) *M$$

$$= (2^{6} - 2^{2}) *M$$

- ☐ Running the Booth's algorithm by scanning multiplier from right to left
 - Iteration 0, pattern = 00
 - Iteration 1, pattern = 00
 - \circ Iteration 2, pattern = 10
 - Iteration 3, pattern = 11
 - O Iteration 4, pattern = 11
 - Iteration 5, pattern = 11
 - \circ Iteration 6, pattern = 01

To find out why, do the math:

- \square Consider a series of ones in the multiplier (from bit i_1 to bit i_2)
- ☐ M: multiplicand; multiplying M with this series of ones results in

```
Prod = (2^{i1}) * M + (2^{i1+1}) * M + ... + (2^{i2}) * M
= (2^{i2+1}-2^{i1}) * M
```

 \square Thus, (i_2-i_1) adds in revised algorithm \Rightarrow one add and one subtract

Detailed algorithm:

- We look at 2 bits at a time (current bit and previous one):
 - 00: middle of a string of 0's; no arithmetic operation
 - 01: end of a string of 1's; add M to the left half of product
 - 10: start of a string of 1's; subtract M from the left half of product
 - 11: middle of a string of 1's- no arithmetic operations
- ☐ Previous bit is set to 0 for the first iteration to form a two-bit pattern

□Multiply 14 with -5 using 5-bit numbers (10-bit result)

Booth's Algorithm for Binary Multiplication Example

Multiply 14 times -5 using 5-bit numbers (10-bit result).

14 in binary: 01110

-14 in binary: 10010 (so we can add when we need to subtract the multiplicand)

-5 in binary: 11011

Expected result: -70 in binary: 11101 11010

Booth's Algorithm: Example

Multiply 14 with -5 using 5-bit numbers (10-bit result)

Step	Multiplicand	Action	Multiplier upper 5-bits 0, lower 5-bits multiplier, 1 "Booth bit" initially 0	
0	01110	Initialization	00000 11011 0	
1 01110	01110	10: Subtract Multiplicand	00000+10010=10010 10010 11011 0	
		Shift Right Arithmetic	11001 01101 1	
2 0111		11: No-op	11001 01101 1	
	01110	Shift Right Arithmetic	11100 10110 1	
3 01110	01110	01: Add Multiplicand	11100+01110=01010 (Carry ignored because adding a positive and negative number cannot overflow.) 01010 10110 1	
		Shift Right Arithmetic	00101 01011 0	
4	01110	10: Subtract Multiplicand	00101+10010=10111 10111 01011 0	
		Shift Right Arithmetic	11011 10101 1	
5	000000	11: No-op	11011 10101 1	
	01110	Shift Right Arithmetic	11101 11010 1	

Booth Algorithm and Division

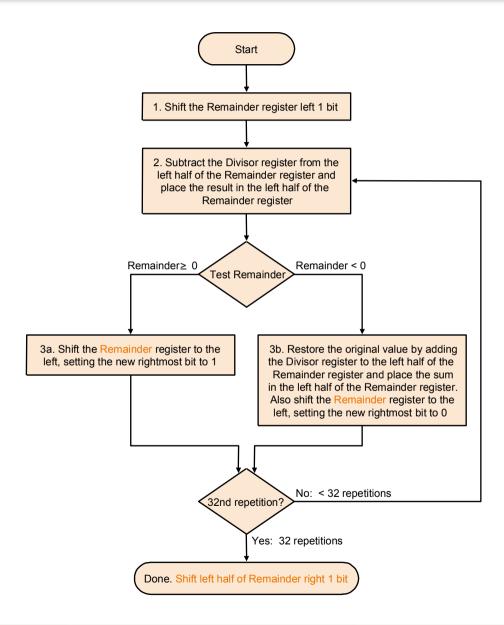
Review of Booth algorithm

- Examples

Division

- Examples

Exercises



Division: Examples

Answer the following in binary form (numbers are in base 10, convert to 4-bit binary numbers)

- □ Divide 10 by 3 = > 1010 by 0011
- □ Divide 5 by 7 => 0101 by 0111

Booth Algorithm and Division

Introduction of Booth algorithm

- Examples

Division

- Examples

Exercises

Answer the following in binary form (numbers are in base 10, convert to 4-bit binary numbers)

- □Multiply -2 by -7 (result in 8-bit binary numbers)
- □Multiply -8 by 4 (result in 8-bit binary numbers)

- □Divide -7 by 2
- □Divide -8 by -2