
1

COMP2611 Computer Organization, Fall 2015

Programming Project: The Space Game

(Submission deadline: Nov 30, 5pm via Canvas)

1. Introduction

In this project, you are going to implement a Space game with MIPS assembly language.

Figure 1 shows a snapshot of the game. A group of astronauts are wandering around the

Space. The evil aliens might hurt the astronauts so the spaceship needs to wipe them off.

The spaceship emits bombs to kill aliens. The tricky part of the game is that the bombs may

accidentally kill the astronauts too. Player needs to shoot and kill all aliens.

Figure 1 The snapshot of the Space game

2. Coordinate System

The game screen is of 800-pixel width by 600-pixel height as illustrated in Figure 2. The

top-left is the origin of the coordinates, denoted as (0, 0). The value of x-axis increases from

2

the left to the right and the value of y-axis increases from the top to the bottom. This follows

Java Swing coordinate system, which is used to support GUI in the game.

All game objects are represented as images with the rectangular shape. Moreover, each

object’s location is denoted as the coordinates of the top-left corner point of the rectangle. For

example, the location of the alien in Figure 2 is specified by the point (540,300).

Figure 2 The coordinate system

3. Game Objects

There are five types of game objects: spaceship, astronaut, alien, simple bomb, and

remote-control bomb. Every object has attributes as listed below. You can manipulate the

above attributes through appropriate syscall services (details in following pages).

 Current location: a (x, y) coordinate which indicates the current location of the

object.

 Moving speed: an integer variable indicating the moving speed of the game object.

Spaceship, alien and astronaut move horizontally at preset constant speeds of 4, 6,

and 5 respectively, in pixels per time unit. Aliens slow down to speed of 3 when it’s

injured.

 Moving direction: a Boolean variable indicating the moving direction of the game

object.

Spaceship, alien and astronaut moves from left to right when it’s TRUE, from right to

left otherwise. Bomb always moves upwards.

The next location of the object depends on its current location, moving direction and

moving speed. All game objects should remain within the game screen, e.g. whenever

the spaceship, the alien and the astronaut touch the border, it should turn around and

move to the opposite direction.

3

 Hit points (HP): an Integer variable indicating the left life value of a game object.

If the hit point of an object goes to zero, then the game object is “dead”. Astronaut

and alien have initial hit point of 10 and 20 respectively. Both types of bomb and

spaceship have the hit point of 1.

Object Width

(in pixels)

Height

(in pixels)

Speed Initial HP Initial position

Spaceship 130 80 4 1 (320,440)

Astronaut 80 60 5

10 Random position with y

coordinate in the range of

[50, 350]

Alien 80 40 6

3 (injured)

20 Random position with y

coordinate in the range of

[100, 400]

Bomb 30 30 4 1 Decided by the location of

Spaceship when the bomb is

emitted

Table 1 Properties of game object

4. Game Details

4.1 Winning and losing of the game

The game has two levels: Level 1 and Level 2. Level 2 has more aliens to be destroyed. In

each level, player targets to kill all aliens while keep astronauts alive. The game terminates

when no astronaut is alive. Player wins the game when he/she passes both levels.

4.2 Bomb and hit

Bombs are emitted from the spaceship, moving upwards at the constant speed of 4. There are

two types of bombs: simple and remote control.

Simple bomb is active once it’s shot. Remote bomb is initially not destructive till it’s

activated by the player. Pressing the key ‘s’ emits a simple bomb . Pressing the key ‘r’

emits a remote-control bomb which is inactive. Pressing the key ‘a’ afterwards

activates the remote bomb and it is shown as .

4

If the rectangle area of an active bomb intersects with the rectangle area of an astronaut, it’s

said that the bomb hits the astronaut and kills him, i.e. the hit point of the astronaut is set to be

0.

Things are little bit complicated when an active bomb hits the alien. Depending on the degree

of intersection between the bomb and the alien, the alien might be killed or ‘injured’.

In particular, suppose an alien currently locates at (x, y) on the screen. If the activated bomb

intersects with the central area of the alien - the area which locates at (x+35, y) with 10-pixel

width and 40-pixel height, the alien is killed, and its hit point is reduced to 0, as illustrated by

Figure 3(a). If the activated bomb intersects with the alien outside of the central area, as

illustrated by Figure 3(b), the hit point of the alien is decreased by 5. Such alien will go to the

“injured” state and its moving speed will be cut to half to 3. If the alien gets injured for a few

times and its hit point reaches to 0, it’s killed. The deducted hit points of aliens are

accumulated as the game score.

 Figure 3 Different cases of bomb hit

Whenever the activated bomb explodes, the bomb itself is destroyed completely with its hit

point reduced to 0. Please note an exploded bomb can cause damage to multiple objects

simultaneously, an example is given by Figure 4.

 Figure 4 Bomb hits multiple objects

On the top of the game screen, the number of bombs available now is shown. Note if a bomb

is exploded or falls outside the border of the game screen, it will be recycled back to use.

4.3 Game initialization

At the beginning of the game, the player can input the number of game objects such as

astronauts, aliens, simple bombs and remote-control bombs. The number of each kind of

game object is in the range [1, 10].

5

Given the initial parameters, the game engine draws the initial screen. Spaceship is put at the

bottom center of the screen, heading to the right. Random pictures of astronauts and aliens are

retrieved from image repository, and they are put in random position in upper part of the

screen area, all heading to the right.

Level 2 of the game runs quite similar to level 1, with more aliens. The number of aliens in

level 2 equals to number of aliens chosen by player plus 4.

4.4 Game skeleton

The skeleton code consists of a big loop, it proceeds as follows:

1. Get the current time: jal get_time.

2. Check whether the game reaches the ending condition: jal check_game_end.

game_end_status then handle different actions for game over, game win, or promote

from level 1 to level 2. If it’s still in the middle of the game, go to step 3.

3. Update the game object’s status: jal update_object_status. Check the game

objects’ status. Remove any killed aliens, astronauts or exploded bombs from the screen.

4. Process the keyboard input: jal process_input. The input key is stored using the

Memory-Mapped I/O scheme. If the keyboard input is valid, perform the related action.

Input key Action

s Emit a simple bomb when available: jal emit_one_bomb

r Emit a remote-control bomb when available: jal emit_one_rbomb

a Activate all the remote-control bombs in the screen: jal activate_rbombs

5. Check bomb hits: jal check_bomb_hits. For each activate bomb, check whether it

hits any astronauts or aliens. If any hit happens, update the status of astronaut or alien,

and the bomb itself.

6. Move the spaceship: jal move_ship.

7. Move the astronauts: jal move_Astronauts.

8. Move the aliens: jal move_Aliens.

9. Move the bombs: jal move_bombs.

10. Update the score: jal update_score.

11. Refresh the game screen.

12. Take a nap if necessary: jal have_a_nap. The interval between two consecutive

iterations of the game loop is about 30 milliseconds.

13. Go to step 1.

6

5. Your tasks

Read the skeleton and understand how it works. Then fulfill the following MIPS procedures

in the skeleton code.

Note: You don’t need to understand every single detail of the skeleton. You can discuss with

your friends if you have difficulty in understanding the skeleton. But every single line of code

should be your own work.

Procedure Inputs Outputs Description

check_one_bomb_hit $a0: bomb

id

 Given the bomb id, check whether it hits astronaut

or alien.

The astronaut is always killed by the bomb (hit

point reduced from 10 to 0).

The alien is either killed (hit point reduced to 0), or

gets injured (deduct 5 hit points).

This procedure pushes the coordinates of two game

objects into stack, and then calls procedure

check_intersection, to detect whether the

two game objects intersect.

check_intersection recA: ((x1,

y1),

(x2, y2))

recB: ((x3,

y3), (x4,

y4))

$v0:1 for

true(intersect

with each

other); 0 for

false

Check whether the given two rectangles are

intersected.

(x1, y1) and (x2, y2) are the coordinates of top-left

and bottom-right of rectangle recA.

(x3, y3) and (x4, y4) are the coordinates of top-left

and bottom-right of rectangle recB.

The eight coordinates are passed via stack by

check_one_bomb_hit.

move_Astronauts

 Move astronauts to the next location.

If the astronaut passes across the border, turn it

around and set proper new location and direction.

update_score Game score is updated each iteration.

The procedure increases the game score by the

reduced hit points of Aliens in current iteration.

mailto:@rec1:
mailto:@rec2:

7

Note: The skeleton file provided is just to help you understand the game thoroughly and ease

your life. If you think it poses any restriction on you, feel free to have your own

implementation from scratch. If you don’t use the skeleton code, please state that at the

beginning of the submitted .asm file.

6. Syscall Services in Usage

We have implemented a group of additional syscall services to support game related functions

(e.g. GUI and sound). You should do your coding work using the modified Mars provided on

our course website.

Syscall code should be passed to $v0 before usage.

Service Code Parameters Result

Create game

screen

100 $a0 = base address of a string for

game's title;

$a1 = width

$a2 = height

Create a Spaceship 101 $a0 = id of this ship

$a1 = x_loc

$a2 = y_loc

$a3 = speed

Note: id must be unique.

Create an

Alien

102 $a0 = id, $a1 = x_loc, $a2 = y_loc

$a3 = speed

$t0 = image_id

Create an

Astronaut

103 $a0 = id, $a1 = x_loc, $a2 = y_loc

$a3 = speed

$t0 = image_id

Note: the id of the game object

must be unique!

Create a Text

Object

104 $a0 = id

$a1 = x_loc

$a2 = y_loc

Display the text message at the

specified location.

8

$a3 = base address of a string for

game's title;

Play game sound 105 $a0 = sound id

$a1 = 1: (loop play), 0: play once

The sound ids are described as

follows:

0: the sound effect of background;

1: the sound effect of bomb

exploding;

2: the sound effect of emitting a

bomb;

3: the sound effect of game lose;

4: the sound effect of game win;

5: the sound effect of the bomb

hitting an object

Play a sound identified by $a0.

Create a Simple

Bomb

106 $a0 = id

$a1 = x_loc

$a2 = y_loc

$a3 = speed

Create a Remote

Bomb

107 $a0 = id

$a1 = x_loc

$a2 = y_loc

$a3 = speed

Get Remote Bomb

Status

108 $a0 = id $v0 = 0: inactive, 1: active; -1:

error

Activate Remote

Bomb

109 $a0 = id Activate a remote bomb

Get Object

Location

110 $a0 = id $v0 = x_loc;

$v1 = y_loc;

Get Object Speed 111 $a0 = id $v0 = speed;

Get Object

Direction

112 $a0 = id $v0 = 1: right; 0: left

9

Set Object

Direction

113 $a0 = id

$a1 = (0: left; 1:right)

Deduct Hit Point

of the Object

114 $a0 = id

$a1 = point

deduct the hit point of

a game object by the value of

$a1.

Get Object Score 115 $a0 = id $v0 = score

Destroy an Object 116 $a0 = id Destroy the game object

from the game screen (also from

the java memory).

Update Game

Score

117 $a0 = score

Get Hit Point of

the Object

118 $a0 = id $v0: the hit point

Refresh Screen 119 Redraw the game screen and all

game objects which are alive.

Set Object

Location

120 $a0 = id

$a1 = x

$a2 = y

Manually set the location of the

game object to be (x, y).

Update Object

Location

121 $a0 = id Update the object location

according to its current location,

speed and direction.

Stop a game sound 122 $a0 = sound id If a background sound is played

repeatedly, the syscall stops

the sound.

Update bomb

information

123 $a0 = number of leftover simple

bombs;

$a1 = number of leftover remote

bombs;

Update the Level

message

124 $fp = level of the game Show the current level of the

game (given in $fp, either 1 or

2) or the top left of the screen

10

7. Submission

You should *ONLY* submit the file comp2611_game_yourstudentid.asm with your

completed codes for the project. Please write down your name, student ID, and email address

at the beginning of the file.

Submission is via Canvas. The deadline is a hard deadline. Try to avoid uploading in the last

minute. If you upload multiple times, we will grade the latest version by default.

8. Grading

Your project will be graded on the basis of the functionality listed in the game requirements.

Therefore, you should make sure that your code can be executed properly in the modified

Mars.

9. Bonus

If you enjoy MIPS programming, and would like to make the Space game more fun,

feel free to discuss your idea with instructor Dr. Cindy LI. With her pre-approval and

successful implementation as planned, a bonus of up to 2 marks (out of 100 marks of

course final score) will be assigned.

You may also propose your own game. Again, discuss with Dr. Cindy LI for

pre-approval. A good game with reasonable complexity can also earn 15 marks

project score plus the 5 marks bonus (out of 100 marks of course final score). Note

you might need to modify the Mars and design your own syscall to support the new

game.

