
COMP2611 Fall 2015

Introduction

COMP2611: Computer Organization

COMP2611 Fall 2015 Introduction

2 Course Info.

Course’s homepage http://course.cse.ust.hk/comp2611

Lecture

TuTh 1:30PM – 2:50PM, Room 2502 (Lift 25/26)

Instructor: Dr. Cindy lixin@cse.ust.hk

Office: RM 3535

You also need to attend Tutorials and Labs, which are necessary
supplements to lectures

Reading the textbook is also a very important part in the workflow of
this course.

Course Facebook: search HKUST CSE COMP2611 Fall 2015

mailto:lixin@ust.hk

COMP2611 Fall 2015 Introduction

3 Course Info.

 Grading

 2 Quizzes 15% (2 x 7.5%)

• Quiz 1 Oct 5 (Mon) during lab

 Programming Project 15%

 Midterm Exam 30%

• Oct 12 (Sat) 7pm LTB

 Final Exam 40%

 Policies

 Course project should be individual work; both ‘provider’
and ‘copier’ will be penalized equally and harshly

 Skipping the midterms or final examination without prior
approval will automatically lead to an "F" grade for the
course

Basic assumptions and terminology

 How do computers represent data? Electrical signals (two states)

 Therefore computing relies on base 2 to represent numbers.

 What is base 2 anyway?

 We actually use base 10 (decimal) in our daily calculations

• 1452 is actually: 1 4 5 2

 103 102 101 100

• Base 10 has 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9

 Base 2 (binary) uses two digits or (Bits) 0 and 1

• 810 = 10002; 1710 = 100012

• Conversion from base 10 to 2 is done via successive divisions by 2

 Many other bases have been used over the millennia

 Base 60 (Sumerians civilization in Iraq, remnants are found in timekeeping)

 Base 1 (herringbone)

 Base 16 (hexadecimal) very useful in Computer Science (seen later)

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

COMP2611 Fall 2015 Introduction

4

Basic assumptions and terminology

 When dealing with a size (e.g.,
Memory or file)

 Kilo – 210 or 1024

 Mega – 220 or 1024 Kilo

 Giga – 230 or 1024 Mega

 Tera – 240 or 1024 Giga

 Peta - 250 or 1024 Tera

 …

Example:

- The memory in my computer is

 4 Gigabytes

- The PPT file for this lecture is

 2.5 Megabytes

 When dealing with a
rate/frequency (e.g., #
instructions per second, # clock
ticks per second)

 Kilo – 103 or 1000

 Mega – 106 or 1000 Kilo

 Giga – 109 or 1000 Mega

 Tera – 1012 or 1000 Giga

 Peta - 1015 or 1000 Tera

 …

Example:

- The speed of my network card is

 1 Gigabit per second

- The speed of my Intel processor is

 2.89 Gigahertz

COMP2611 Fall 2015 Introduction

5

COMP2611 Fall 2015 Introduction

6 Classes of Computers

Computers have led to a third revolution for civilization:

agricultural -> industrial -> information

 Desktop computers:

 Run a variety of general purpose software

 Designed to achieve good performance at low cost

 Embedded computers:

 Usually hidden as a component of a system (e.g., mobile phone, cars,
airplanes, ATM machines, Smart card, …)

 Run a predefined program

 Subject to a stringent power/performance/cost constraint

 Servers and Networked computers:

 High storage and computing capacity, performance and reliability

 Used to run large programs for multiple users

 Only accessible via a network

 Range from small servers to building sized, to several thousand
computers in a grid

 Examples of embedded system

 Examples of server

Why you’re Here?

 Why do you take COMP2611?

 What have you heard about COMP2611 from senior students?

 What do you expect to learn from COMP2611?

Computer in the Ooooooooooold Days

COMP2611 Fall 2015 Introduction

11

What did the Programmer Do?

0 0

1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

How does computer understand your instruction?

s w a p (i n t v [] , i n t k)

{ i n t t e m p ;

 t e m p = v [k] ;

 v [k] = v [k + 1] ;

 v [k + 1] = t e m p ;

}

COMP2611 Fall 2015 Introduction

14 “What” you will learn in COMP2611

 How programs are translated from high level programming language to
machine language

 How the hardware executes programs written in machine language

 The interface between the hardware and the software or the Instruction

Set Architecture (ISA)

 What determines the performance of a program and how it can be
improved

 How hardware designers improve the performance

 How to measure and analyze computer performance

 To tell why a design is good or bad – Chapter 1

 How computers work

 Computer Arithmetic and implementation – Chapter 3

 Issues affecting design of modern processors – Chapters 2, 4 (and 7)

 Exploiting memory hierarchy – Chapter 5

Below Your Program

 Application software

 Written in high-level language

 Ex: Comp2011 assignment written in C++

 System software

 Compilers: translates HLL code to
machine code

 Operating System: service code

• Handle input/output

• Manage memory and storage

• Schedule tasks & share resources

 Hardware

 Processor,

 memory,

 I/O controllers

COMP2611 Spring 2013 Introduction

15

COMP2611 Fall 2015 Introduction

16

C c o m p i l e r

A s s e m b l e r

Levels of Program Code

s w a p (i n t v [] , i n t k)
{ i n t t e m p ;
 t e m p = v [k] ;
 v [k] = v [k + 1] ;
 v [k + 1] = t e m p ;
}

s w a p :
 m u l i $ 2 , $ 5 , 4
 a d d $ 2 , $ 4 , $ 2
 l w $ 1 5 , 0 ($ 2)
 l w $ 1 6 , 4 ($ 2)
 s w $ 1 6 , 0 ($ 2)
 s w $ 1 5 , 4 ($ 2)
 j r $ 3 1

0 0
1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Assembly (low-level)
language program (for MIPS)

Binary machine language
program (for MIPS)

High-level language
program (in C)

for human

for machine

COMP2611 Fall 2015 Introduction

17

C c o m p i l e r

A s s e m b l e r

Levels of Abstraction in Program Code

s w a p (i n t v [] , i n t k)

{ i n t t e m p ;

 t e m p = v [k] ;

 v [k] = v [k + 1] ;

 v [k + 1] = t e m p ;

}

s w a p :

 m u l i $ 2 , $ 5 , 4

 a d d $ 2 , $ 4 , $ 2

 l w $ 1 5 , 0 ($ 2)

 l w $ 1 6 , 4 ($ 2)

 s w $ 1 6 , 0 ($ 2)

 s w $ 1 5 , 4 ($ 2)

 j r $ 3 1

0 0
1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 High-level language

 Level of abstraction closer to the problem
domain

 Helps increase productivity, portability and
simplify debugging

 Assembly language

 Binary instructions represented in symbolic
notation

 One to one mapping with binary instructions

 Assemblers translate from Assembly
language to machine language

 Hardware representation

 Computers only deal with binary digits (bits)

 Instructions and data are encoded as bit
strings

COMP2611 Fall 2015 Introduction

18 Levels of Abstraction

Impossible to understand computer components by looking at every
single transistor. Instead, abstraction is needed.

System Software (e.g. Windows, Linux)

Applications (Powerpoint, Warcraft, Winamp)

Instruction Set Architecture (ISA)

Hardware

Focus of COMP2611

COMP2611 Fall 2015 Introduction

19 Levels of Abstraction (cont’d)

 Key ideas:

 Both hardware and software are organized into hierarchical
layers.

 Hierarchical organization helps to cope with system complexity.

 Lower-level details are hidden to offer a simpler view at the
higher levels.

 Interaction between levels occurs only through well-defined
interface.

 Example:

 Interface between hardware and software: Instruction set
architecture (ISA)

COMP2611 Fall 2015 Introduction

20 Instruction Set Architecture

An instruction set architecture (ISA) provides an abstract
interface between hardware and low-level software.

 Advantage: allows different implementations of varying cost and
performance to follow the same instruction set architecture (i.e., to
run the same software).

 Example: 80x86, Pentium, Pentium II, Pentium III, Pentium 4 all
implement the same ISA

 Some instruction set architectures:

 80x86/Pentium/K6 (offers different implementations)

 MIPS

 ARM

 PowerPC

Anything in Common?

COMP2611 Fall 2015 Introduction

22 Components of a Computer

Five Basic Components (all kinds of computers)

 Input:

 To communicate with the computer

 Data and instructions transferred to

the memory

 Output:

 To communicate with the user

 Data is read from the memory

 Memory:

 Large store to keep instructions and data

 Processor, which consists of:

 Datapath: processes data according to instructions.

 Control: commands the operations of input, output, memory, and
datapath according to the instructions.

Anatomy of a Computer: I/O

Output device

Input device Input device

Network cable

COMP2611 Fall 2015 Introduction

23

Opening the Box: in My College Days

Anatomy of a Computer: Opening the Box

COMP2611 Fall 2015 Introduction

25

Anatomy of a Computer: Inside the Processor

 AMD Barcelona: 4 processor cores

COMP2611 Fall 2015 Introduction

26

Volatile main memory (RAM)

 Used by the processor to store programs and data

 Loses instructions and data when powered off

Non-volatile secondary memory

 Magnetic disk

 Flash memory

 Optical disk (CDROM, DVD)

Anatomy of a Computer: Memory

COMP2611 Spring 2013 Introduction

27

COMP2611 Fall 2015 Introduction

28 Rapidly Changing Forces on Computer Architecture

Computer
Architecture

Technology Operating systems

Programming languages Applications

What are These Technologies?

COMP2611 Fall 2015 Introduction

30 Technology Trends

Year
Technology used in

computers

Relative
performance
per unit cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995
Very large scale

integrated (VLSI)
circuit

2,400,000

2005
Ultra large scale
integrated circuit

6,200,000,000

 Increased capacity and performance

 Reduced cost

 Processor:

 Logic capacity: ~30% per year

 Clock rate: ~20% per year

 Memory:

 DRAM capacity: ~60% per year
(or ~4X every 3 years)

 Memory speed: ~10% per year

 Cost per bit: decreases ~25% per
year

 Disk:

 Capacity: ~60% per year

Moore’s Law

COMP2611 Fall 2015 Introduction

31

Source Wikipedia

COMP2611 Fall 2015 Introduction

32 Key Concepts to Remember

 Five basic components of a computer

 input, output, memory, processor (datapath + control)

 Principle of abstraction

Help cope with design complexity by hiding low level details

 Instruction set architecture

 Important abstraction interfaces hardware with low-level software

