COMP2611: Computer Organization

Introduction

COMP2611 Fall 2015

Course's homepage http://course.cse.ust.hk/comp2611

Lecture TuTh 1:30PM – 2:50PM, Room 2502 (Lift 25/26) Instructor: Dr. Cindy <u>lixin@cse.ust.hk</u> Office: RM 3535

You also need to attend Tutorials and Labs, which are necessary supplements to lectures Reading the textbook is also a very important part in the workflow of this course.

Course Facebook: search HKUST CSE COMP2611 Fall 2015

Course Info.

□ Grading

- 2 Quizzes 15% (2 x 7.5%)
 - Quiz 1 Oct 5 (Mon) during lab
- **O Programming Project** 15%
- O Midterm Exam 30%
 - Oct 12 (Sat) 7pm LTB
- o Final Exam 40%

Policies

- Course project should be individual work; both 'provider' and 'copier' will be penalized equally and harshly
- Skipping the midterms or final examination without prior approval will automatically lead to an "F" grade for the course

□ How do computers represent data? Electrical signals (two states)

• Therefore computing relies on base 2 to represent numbers.

□ What is base 2 anyway?

• We actually use base 10 (decimal) in our daily calculations

- 1452 is actually: $1 \quad 4 \quad 5 \quad 2$ $10^3 \quad 10^2 \quad 10^1 \quad 10^0$
- Base 10 has 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9
- Base 2 (binary) uses two digits or (Bits) 0 and 1
 - $8_{10} = 1000_2$; $17_{10} = 10001_2$
 - Conversion from base 10 to 2 is done via successive divisions by 2
- Many other bases have been used over the millennia
 - Base 60 (Sumerians civilization in Iraq, remnants are found in timekeeping)

 - Base 16 (hexadecimal) very useful in Computer Science (seen later)
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

When dealing with a size (e.g., Memory or file)

- Kilo 2¹⁰ or 1024
- Mega 2²⁰ or 1024 Kilo
- Giga 2³⁰ or 1024 Mega
- Tera 2⁴⁰ or 1024 Giga
- Peta 2⁵⁰ or 1024 Tera
- O ...

Example:

- The memory in my computer is 4 Gigabytes
- The PPT file for this lecture is 2.5 Megabytes

- When dealing with a rate/frequency (e.g., # instructions per second, # clock ticks per second)
 - o Kilo
 - o Mega
 - o Giga
 - o Tera
 - o Peta
 - O ...

- 10³ or 1000
- 10⁶ or 1000 Kilo
- 10⁹ or 1000 Mega
- 10¹² or 1000 Giga
- 10¹⁵ or 1000 Tera

Example:

- The speed of my network card is 1 Gigabit per second
- The speed of my Intel processor is
 2.89 Gigahertz

Classes of Computers

Computers have led to a **third revolution** for civilization:

agricultural -> industrial -> information

Desktop computers:

- Run a variety of general purpose software
- Designed to achieve good performance at low cost

Embedded computers:

- Usually hidden as a component of a system (e.g., mobile phone, cars, airplanes, ATM machines, Smart card, ...)
- Run a predefined program
- Subject to a stringent power/performance/cost constraint

Servers and Networked computers:

- High storage and computing capacity, performance and reliability
- Used to run large programs for multiple users
- Only accessible via a network
- Range from small servers to building sized, to several thousand computers in a grid

□ Examples of embedded system

□ Examples of server

□ Why do you take COMP2611?

□ What have you heard about COMP2611 from senior students?

□ What do you expect to learn from COMP2611?

Computer in the Oooooooooold Days

COMP2611 Fall 2015

What did the Programmer Do?

FIGURE 4.11 IBM 026 Keypunch (Courtesy IBM).

How does computer understand your instruction?

swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

"What" you will learn in COMP2611

- How programs are translated from high level programming language to machine language
- □ How the hardware executes programs written in machine language
- □ The interface between the hardware and the software or the Instruction Set Architecture (ISA)
- What determines the performance of a program and how it can be improved
- □ How hardware designers improve the performance
- □ How to measure and analyze computer performance
- To tell why a design is good or bad Chapter 1
- □ How computers work
- Computer Arithmetic and implementation Chapter 3
- Issues affecting design of modern processors Chapters 2, 4 (and 7)
- Exploiting memory hierarchy Chapter 5

Below Your Program

Application software

- Written in high-level language
- Ex: Comp2011 assignment written in C++

System software

- Compilers: translates HLL code to machine code
- Operating System: service code
 - Handle input/output
 - Manage memory and storage
 - Schedule tasks & share resources

Hardware

- Processor,
- o memory,
- I/O controllers

Levels of Program Code

High-level language program (in C)

Assembly (low-level) language program (for MIPS)

for machine

Binary machine language program (for MIPS)

swap(int v[], int k) {int temp; temp = v[k]; v[k] = v[k+1];v[k+1] = temp;C compiler swap: muli \$2, \$5,4 add \$2, \$4,\$2 \$15, 0(\$2 lw \$16. Iw \$16.00 SW \$15.4 SW \$31 Assembler

COMP2611 Fall 2015

Levels of Abstraction in Program Code

High-level language

- Level of abstraction closer to the problem domain
- Helps increase productivity, portability and simplify debugging

Assembly language

- Binary instructions represented in symbolic notation
- One to one mapping with binary instructions
- Assemblers translate from Assembly language to machine language

Hardware representation

- Computers only deal with binary digits (bits)
- Instructions and data are encoded as bit strings

swap(int v[], int k) {int tem p; temp = v[k];v[k] = v[k+1];v[k+1] = tem p;} C compiler swap: muli \$2, \$5,4 add \$2,\$4,\$2 \$15, 0(\$2)Iw \$16, 4(\$2)Iw \$16, 0(\$2)S W \$15, 4(\$2)S W ir \$31 Assembler

COMP2611 Fall 2015

Impossible to understand computer components by looking at every single transistor. Instead, **abstraction** is needed.

COMP2611 Fall 2015

□ Key ideas:

- Both hardware and software are organized into hierarchical layers.
- Hierarchical organization helps to cope with system **complexity**.
- Lower-level details are hidden to offer a simpler view at the higher levels.
- Interaction between levels occurs only through well-defined interface.

Example:

COMP2611 Fall 2015

• Interface between hardware and software: Instruction set architecture (ISA)

An instruction set architecture (ISA) provides an abstract interface between hardware and low-level software.

- Advantage: allows different implementations of varying cost and performance to follow the same instruction set architecture (i.e., to run the same software).
 - Example: 80x86, Pentium, Pentium II, Pentium III, Pentium 4 all implement the same ISA
- □ Some instruction set architectures:
 - **80x86/Pentium/K6** (offers different implementations)
 - O MIPS
 - O ARM
 - PowerPC

Anything in Common?

Five Basic Components (all kinds of computers)

□ Input:

To communicate with the computer
Data and instructions transferred to the memory

Output:

- To communicate with the user
- Data is read from the memory

□ Memory:

- Large store to keep instructions and data
- □ **Processor**, which consists of:
 - **Datapath**: processes data according to instructions.
 - **Control**: commands the operations of input, output, memory, and datapath according to the instructions.

COMP2611 Fall 2015

Opening the Box: in My College Days

Anatomy of a Computer: Opening the Box

25

COMP2611 Fall 2015

Anatomy of a Computer: Inside the Processor

□ AMD Barcelona: 4 processor cores

26

COMP2611 Fall 2015

□ Volatile main memory (RAM)

- Used by the processor to store programs and data
- Loses instructions and data when powered off

□ Non-volatile secondary memory

- Magnetic disk
- Flash memory
- O Optical disk (CDROM, DVD)

COMP2611 Spring 2013

Rapidly Changing Forces on Computer Architecture 28

COMP2611 Fall 2015

What are These Technologies?

Technology Trends

Increased capacity and performance □ Reduced cost

Processor:

- **Logic capacity**: ~30% per year
- Clock rate: ~20% per year

□ Memory:

- **DRAM capacity**: ~60% per year (or ~4X every 3 years)
- Memory speed: ~10% per year
- **Cost per bit**: decreases ~25% per year

Disk:

• **Capacity**: ~60% per year

Year of introduction

Year	Technology used in computers	Relative performance per unit cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale integrated (VLSI) circuit	2,400,000
2005	Ultra large scale integrated circuit	6,200,000,000

Introduction

COMP2611 Fall 2015

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

COMP2611 Fall 2015

Five basic components of a computer input, output, memory, processor (datapath + control)

Principle of abstraction

Help cope with design complexity by hiding low level details

Instruction set architecture

• Important abstraction interfaces hardware with low-level software