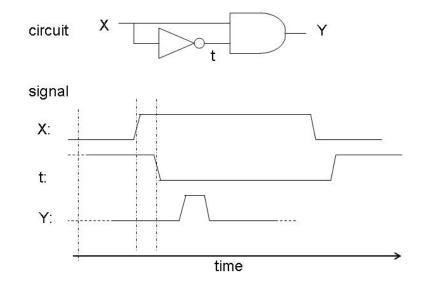
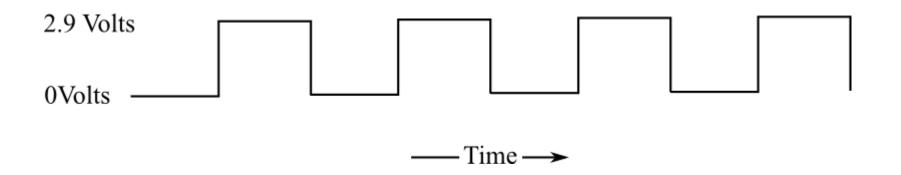
COMP2611: Computer Organization

1


Introduction to Digital Logic

Sequential Logic

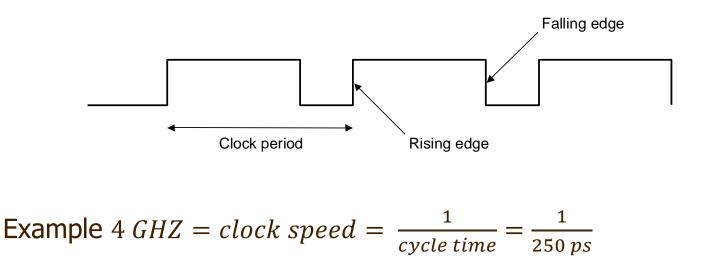
COMP2611 Fall 2015


Time

- □ Till now, we have essentially ignored the issue of time. We assume digital circuits:
 - Perform their computations instantaneously
 - Stateless: once you present a new input, they forget everything about previous inputs
- □ In reality, time is an important issue:
 - Logic gate induces a small amount of delay (on the order of a few nanoseconds)
 - We want our circuit to have some form of memory

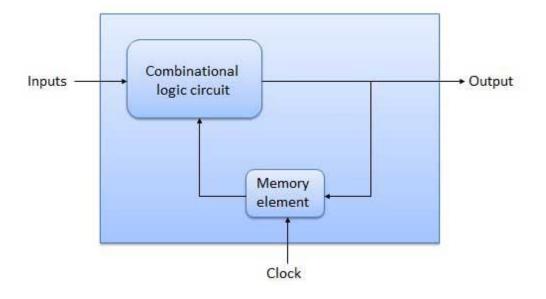
Clocks

- □ A microprocessor is composed of many different circuits that are operating simultaneously if each circuit X takes in inputs at time T_{in} , takes time T_{exe} to execute the logic, and produces outputs at time T_{out} , imagine the complications in coordinating the tasks of every circuit
- Solution: all circuits on the chip share a clock signal (a square wave) that tells every circuit when to accept inputs, how much time they have to execute the logic, and when they must produce outputs

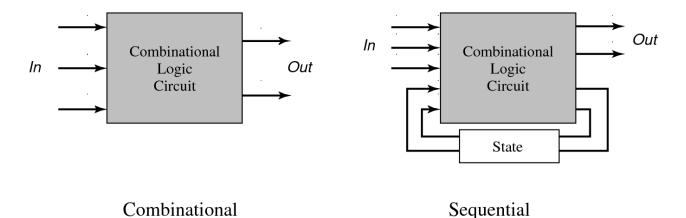


Clock Terminology

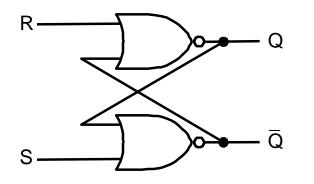
A clock is a free-running signal with a fixed cycle time (called clock period) or, equivalently, a fixed clock frequency (i.e., inverse of the cycle time).


Edge-triggered clocking:

Design methodology for sequential logic circuits in which all state changes occur on a clock edge (rising edge or falling edge).


COMP2611 Fall 2015

- □ Clocked systems are also called **synchronous systems**.
- Sequential logic circuits are circuits whose output depends on both the current input and the value stored in the memory of the circuit (called state)
- Sequential logic circuits often depend on a clock to determine when the memory or state element of the circuit is updated.


COMP2611 Spring

- □ Consists of combinational circuit and a storage elements
- The rising/falling edge causes the 'state' storage to store some updated values
- This state will not change for an entire cycle (until next rising/falling edge)
- The combinational circuit has some time to accept the value of 'state' and 'inputs' and produce 'outputs'
- Some of the outputs (i.e. the value of the next 'state') may feed back and they're only seen in the next cycle
- □ Example: counter, register

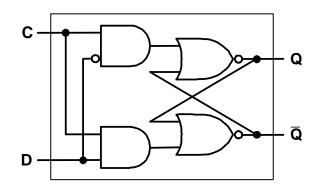
S-R Latch

- □ **S-R latches** (set-reset latches):
 - Unclocked memory element built from a pair of cross-coupled NOR gates (i.e., OR gates with inverted outputs).

Inp	uts	Outputs			
R	S	Q	Not Q		
0	0	Latch			
1	0	0	1		
0	1	1	0		
1	1	Invalid Input			

Operation:

- When Set is **asserted** (high), a 1 is stored
- When Reset is asserted, a 0 is stored
- When both are **de-asserted** (low), the previous state is preserved
- When both are high, the output is unstable,- this set of input is therefore not allowed

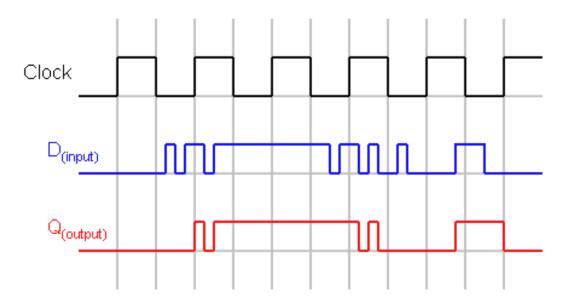

COMP2611 Fall 2015

D Latch

D latches are clocked (i.e., state changes are triggered by a clock).

Operation:

the value of the input D signal (data) is stored only when the clock signal C is asserted – the previous state is preserved when the clock is deasserted.


Inp	uts	Outputs			
С	D	Q	Not Q		
0	0	Latch			
0	1	Latch			
1	0	0	1		
1	1	1	0		

Digital timing diagram

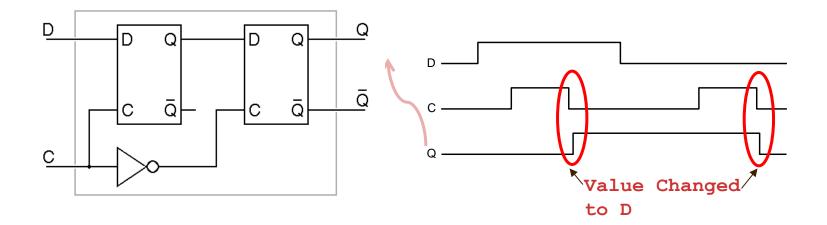
□ A representation of a set of signals in the time domain

□ Can contain many rows, usually one of them being the clock

Example: timing diagram of D latch

9

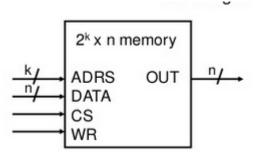
D Flip-Flop


D flip-flops, like D latches, are clocked.

Terminology:

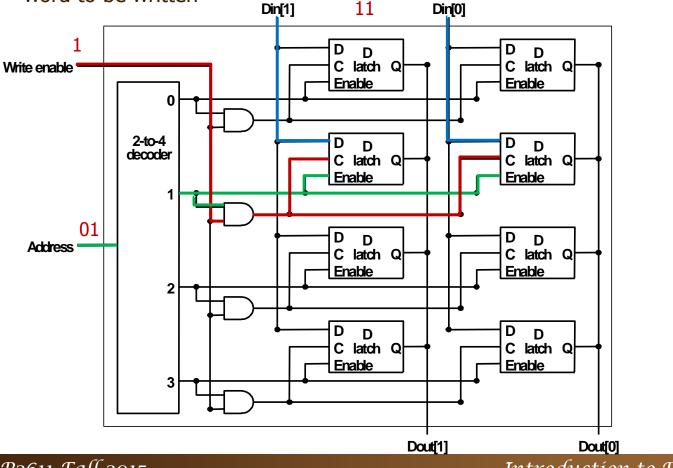
- □ Latch: outputs can change any time the clock is asserted (high)
- □ Flip-flop: outputs can change only on a clock edge

□ Falling-edge-triggered master-slave D flip-flop:


- □ Operation:
 - When the clock input C changes from asserted to de-asserted, the Q output stores the value of the D input.

Introduction to Digital Logic

- D-Latches and flip-flops can be used to build memory elements used by digital computers to hold data temporarily.
 - register file is a structure in the datapath consisting of a set of registers that can be read and written by supplying a register number to be accessed. These represent the hardware "variables"
 - Static random access memories (SRAMs): relatively small memories used for cache and built with flip-flops


•					•

Block diagram of RAM chip

Operation

- □ Stores 4 words of data each word has 2 bits
- Reads the content of one word at a time by supplying its address on 2 bits (i.e., word 00, or 01, or 10, or 11)
- Write data to one word by supplying 2 bits of Data and the 2-bit address of the word to be written

COMP2611 Fall 2015

- Computers use two reference levels of voltage to represent data as binary digits
- Boolean Algebra to express any operation on bits as a logic equation or a equivalently a truth table

□ Three basic operations: AND, OR, and NOT

□ Basic rules of Boolean Algebra

- The transistor (an electronic switch) is the basis for building logic gates
- □ Logic Gates are basic building blocks of more complex logic circuits

□ Two types of logic circuits:

Combinational circuits: process the inputs to produce the output

- Multiplexers
- Decoders
- Arithmetic and logic operations
- Sequential circuits: process the input and the state element (memory) of the circuit to produce the output
 - Memory, registers
 - Not possible to access (read) and update (write) the state element simultaneously, therefore a clock is necessary to control when operations are done
 - Edge-triggered clocks are more efficient and more accurate, than level-based clocks
 - Latches, Flip-flops