COMP2611: Computer Organization

Data Representation

Comp2611 Fall 2015

1. Binary numbers and 2's Complement

COMP2611 Fall 2015

Data Representation

2

- Bits: are the basis for binary number representation in digital computers
- □ What you will learn here:
 - □ How to represent negative integer numbers?
 - □ How to represent fractions and real numbers?
 - □ What is a representable range of numbers in a computer?
 - □ How to handle numbers that go beyond the representable range?
- □ To be covered in Computer Arithmetic:
 - Arithmetic operations: How to add, subtract, multiply, divide binary numbers
 - □ How to build the hardware that takes care of arithmetic operations

Base, Representation and Value

 Numbers can be represented in any base Human: decimal (base 10, has 10 digits 0,1,...,9) Computer: binary (base 2, has 2 digits, 0,1)
 Positional Notation: value of the ith digit d is d x Baseⁱ 1101₂ = (1 x 2³) + (1 x 2²) + (0 x 2¹) + (1 x 2⁰)₁₀ = 13₁₀

Bits are grouped and numbered 0, 1, 2, 3 ... from <u>right</u> to the <u>left</u>: Byte: a group of 8 bits Word: a group of 32 or 64 bits

COMP2611 Fall 2015

Data Representation

2's Complement for signed integer numbers

How can we represent negative integer values in binary?

□ All computers use 2's complement representation for signed numbers

□ The most significant bit is called the sign bit:

When it is 0 the number is non-negative

When it is 1 the number is negative

The positive half uses the same representation as before

The negative half uses the conversion from the positive value illustrated below:

Ex: What is the representation of -6 in 2's complement on 4 bits?

```
i) Start from the representation of +6

0110_2 = 6_{10}

ii) Invert bits to get 1's complement

1001_2 = -7_{10}

iii) Add 1 to get 2's complement

1010_2 = -6_{10}
```

COMP2611 Fall 2015

Data Representation

□ Ex: What is the representation of -6 in 2's complement on 8 bits?

i)	Representation of +	-6 0000 0110 ₂ = 6 ₁₀
ii)	Invert:	$1111\ 1001_2\ =\ -7_{10}$
iii) Add 1	1111 1010 ₂ = -6_{10}

□ Ex: What is the representation of -6 in 2's complement on 32 bits?

□ 1's complement

- □ MSb as in sign
- □ Invert all the other bits
- □ Given a positive number, negate all bits to get negative equivalent

Decimal	Signed	1's complement	2's complement
number	magnitude		
3	011	011	011
2	010	010	010
1	001	001	001
0	000	000	000
-0	100	111	
-1	101	110	111
-2	110	101	110
-3	111	100	101
-4			100

□ We don't need 2 representations for 0

□ 2's complement = 1's complement + 1

□ In One's Complement we have: if $\mathbf{X} = \mathbf{0}$ then $\mathbf{X} = \mathbf{1}$

 $x + x = 1111...111_{2}$

□ In 2's complement $111...111_2 = -1$, therefore

$$x + \overline{x} = 11111...111_{2} = -1$$

 $\overline{x} + 1 = -x$

- □ Smallest integer represented by a 32 bit word: 1000 0000 0000 0000 0000 0000 0000 $_{2} = -2^{31}_{10} = -2,147,483,648_{10}$
- Example: what is largest and smallest integer represented by 8 bits (16 bits)

□ Largest integer

0111 1111₂ = $0x7F = 127 = 128 - 1 = 2^7 - 1$ 0111 1111 1111 1111₂ = $0x7FFF = 32767 = 32768 - 1 = 2^{15} - 1$

□ Smallest integer

```
1000\ 0000_2
Invert and add 1: 0111\ 1111_2\ +\ 1 = 1000\ 0000_2 = 2^7 = 128
=> -128
1000\ 0000\ 00000\ 0000_2
Invert - add 1: 0111\ 1111\ 1111_2\ +\ 1 = 0x8000 = 2^{15} = 32768
=> -32768
```

Overflow and Underflow in Signed Integer

- Given the number of bits used in representing a signed integer
 Overflow (signed integer)
 - The value is bigger than the largest integer that can be represented
 - □ **Underflow** (signed integer)
 - The value is smaller than the smallest integer that can be represented

Large neg	gative ze	ero Large	positive		
Underflow	Representable range	Representable range	Overflow		

Signed numbers

negative or **non-negative** integers, e.g. **int** in C/C++

Unsigned numbers

non-negative integers, e.g. **unsigned** int in C/C++

Ranges for signed and unsigned numbers

32 bit words **signed**:

• from

0111 1111 1111 1111 1111 1111 1111 $1111_2 = (2^{31} - 1)_{10} = 2,147,483,647_{10}$

• to

1000 0000 0000 0000 0000 0000 0000 $_2 = -2^{31}_{10} = -2,147,483,648_{10}$

- 32 bit words **unsigned**:
 - from
 0000 0000 0000 0000 0000 0000 0000₂ = 0₁₀
 - to

1111 1111 1111 1111 1111 1111 1111 $1111_2 = (2^{32} - 1)_{10} = 4,294,967,295_{10}$

□ Consider using a cast in C/C++ on a 32 bit machine

□ What are the values of upper 24 bits in i?

- Similar things happen in hardware when an instruction loads a 16 bit number into a 32 bit register (hardware variable)
- □ Bits 0~15 of the register will contain the 16-bit value
- \Box What should be put in the remaining 16 bits (16~31) of the register?
- Zero extension fills missing bits with 0
 Bitwise logical operations (e.g. bitwise AND, bitwise OR)
 Casting unsigned numbers to larger width

□ **Sign extension** is a way to **extend signed integer** to more bits

Sign Extension

□ Bits 0~15 of **the register** will contain the **16bit value**

 \Box What should be put in the remaining 16 bits (16~31) of the register?

Depends on the sign of the 16 bit number
 If sign is 0 then fill with 0
 If sign is 1 then fill with 1

Does sign extension preserve the same value?

2. Floating Point Numbers

Data Representation

In addition to signed and unsigned integers, we also need to represent

Numbers with fractions (called real numbers in mathematics)

• e.g. 3.1416

Very small numbers

• e.g., 0.0000000001

Very large numbers

• e.g., 1.23456 x 10¹⁰ (a number a 32-bit integer can't represent)

□ In decimal representation, we have **decimal point** > In binary representation, we call it **binary point** $101.11_2 = (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (1 \times 2^{-2})_{10} = 5.75_{10}$

□ Such numbers are called **floating point** in computer arithmetic

Because the binary point is not fixed in the representation

Scientific notation

A single digit to the left of the decimal point e.g. 1.23 x 10^{-3} , 0.5 x 10^{5}

Normalized scientific notation

Scientific notation with no leading 0's e.g. 1.23×10^{-3} , 5.0×10^{4}

□ Binary numbers can also be represented in scientific notation □ All normalized binary numbers always start with a 1 $1.xxx ... xxx_{two} \times 2^{yyy...yyy_{two}}$

□ Example $101.11_2 = 1.0111_2 \times 2^{10_2}$

□ Single-precision uses 32 bits

□ Sign-and-magnitude representation:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s	exponent	Significand/Mantissa
L bit	8 bits	23 bits

 Interpretation
 S = sign; F = significand; E = exponent Value represented = (-1)^s x F x 2^E Roughly gives 7 decimal digits in precision Exponent scale of about 10⁻³⁸ to 10⁺³⁸

□ Compromise between sizes of exponent and significand fields: Increase size of exponent ⇒ increase representable range Increase size of significand ⇒ increase accuracy

□ Double-precision floating-point uses 64 bits

In 32 bit architectures like MIPS, each double-precision number requires two MIPS words

11 bits for exponent, 52 bits for significand

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s	Exponent	Significand/Mantissa
1 bi	it 11 bits	20 bits

Significand/Mantissa (continued)

32 bits

□ Provides precision of about 16 decimals

 \Box Exponent scale from 10^{-308} to 10^{+308}

□ Most computers use this standard for both single and double precision

□ Why use a standard floating-point representation?

Simplify porting floating-point programs across different computers

□ To pack even more bits into the significand

This standard makes the leading 1 bit (in 1.xx ... xxx) implicit Interpretation: $(-1)^{s} x (1 + 0.significand) x 2^{E}$

Effective number of bits used for representing the significand:

- 24 (i.e., 23 + 1) for single precision
- 53 (i.e., 52 + 1) for double precision

Special case:

• Since 0 has no leading 1, it is given the reserved exponent value 0 so that the hardware does not attach a leading 1 to it

Computation of significand:

Significand = $s_1 \times 2^{-1} + s_2 \times 2^{-2} + s_3 \times 2^{-3} + ...$ The significand bits are denoted as $s_1, s_2, s_3, ...,$ from left to right

□ To allow <u>quick</u> comparisons in hardware implementation:

The sign is in the most significant bit The exponent is placed before the significand (Comparisons mean "less than", "greater than", "equal to zero")

How to represent a NEGATIVE exponent? Biased exponent: a bias is implicitly added to the exponent

 $(-1)^{s} \times (1 + 0.significand) \times 2^{(E-bias)}$

bias = 127 for single precision, bias = 1023 for double precision The most negative exponent = 0_2 , the most positive = $11...11_2$

□ What decimal number is represented by this word (single precision)?

 31
 30
 29
 28
 27
 26
 25
 24
 23
 22
 12
 10
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 1
 1
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</th

□ Answer:

$$(-1)^{s} \times (1 + Significan d) \times 2^{(E-Bias)}$$

= (-1)¹ × (1 + 0.25) × 2⁽¹²⁹⁻¹²⁷⁾
= -1×1.25 × 2²
= -1.25 × 4
= -5.0

Example

 \Box Give the binary representation of -0.75₁₀ in single & double precisions

□ Answer $-0.75_{10} = -0.11_{2}$ 0.75 * 2 = **1.50**, S1 = **1** 0.50 * 2 = 1.00, S2 = 1; stop because the fraction is 0.00 Scientific notation: $-0.11_{2} \times 2^{0}$ Normalized scientific notation: $-1(1) \times 2^{-1}$ Sign = 1 (negative), exponent = -1Single precision: S = 1, E = 0.1111110, significand = (100...00) (23) bits) = -1+127, (127 is the bias) Double precision: S = 1, E = 0111111110, significand = (100...00 (52 bits))

= -1+1023, (1023 is the bias)

IEEE 754 Standard for Floating Point Arithmetic

Single precision:	Denormalized	Normalized	
Exponent Significand	0	1 - 254	255
0	0	s	$(-1)^S \times (\infty)$
≠ 0	$(-1)^{S} \times (0.F) \times (2)^{-126}$	$(-1)^{3} \times (1.F) \times (2)^{L}$	non-numbers e.g. 0/0 , $\sqrt{-1}$
			·

Double precision:

Exponent Significand	0	1 - 2046	2047
0	0	$(1)^{S} \times (1 E) \times (2)^{E-1023}$	$(-1)^S \times (\infty)$
≠ 0	$(-1)^{s} \times (0.F) \times (2)^{-1022}$	$(-1) \land (1.1) \land (2)$	non-numbers e.g. 0/0 , $\sqrt{-1}$

23

Example

0 -0 0 | 11111111 | 0000000000000000000000 =+ infinity 1 | 11111111 | 0000000000000000000000 =- infinity NaN (Not a Number) 0 | 11111111 | 0100110001000100001000 =1 | 11111111 | 0100110001000100001000 =NaN $0 |1000000|000000000000000000 = +(1.0_2) \times (2)^{128-127} = 2$ $0 | 10000001 | 10100000000000000000 = +(1.101_{2}) \times (2)^{129-127} = 6.5$ $1 |10000001| 101000000000000000000 = -(1.101_2) \times (2)^{129-127} = -6.5$ $0 0000001 00000000000000000000000 = +(1.0_2) \times (2)^{1-127} = (2)^{-126}$ $0 0000000 100000000000000000 = +(0.1_2) \times (2)^{-126} = (2)^{-127}$

□ **Overflow** (floating-point)

A positive exponent becomes too large to fit in the exponent field

□ **Underflow** (floating-point)

A negative exponent becomes too large to fit in the exponent field

□ How to represent Characters

Characters are unsigned bytes e.g., in C++ Char Usually follow the ASCII standard Uses 8 bits unsigned to represent a character

b7						0	0	0	0	1	1	1	1
b ₆ —					→ 、	0	0	1	1	0	0	1	1
5	b.	b	h	b.	Column			-		, v			
Bits	D4 ↓	D3 ↓	D2 ↓	D1 ↓	Row ↓	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р		р
	0	0	0	1	1	SOH	DC1	İ	1	A	Q	а	q
	0	0	1	0	2	STX	DC2		2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	C	S	С	S
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	E	U	e	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	v
	0	1	1	1	7	BEL	ETB	•	7	G	W	g	w
	1	0	0	0	8	BS	CAN	(8	H	Х	h	x
	1	0	0	1	9	HT	EM)	9	I	Y	į	У
	1	0	1	0	10	LF	SUB	*	1	J	Z	j	Z
	1	0	1	1	11	VT	ESC	+	-	K	[k	{
	1	1	0	0	12	FF	FC	3	<	L	۸	-	
	1	1	0	1	13	CR	GS	-	=	М]	m	}
	1	1	1	0	14	SO	RS	-	>	N	۸	n	~
	1	1	1	1	15	SI	US	1	?	0	_	0	DEL

□ What does the following 32 bit pattern represent: 0x32363131

□ If it were a 2's complement integer the MSb is 0 therefore this is a positive number evaluation left as an exercise □ An unsigned number Same value as above □ A sequence of ASCII encoded bytes: 2611 Checking the ascii table gives: 0x32 = code for character '2'0x36 = code for character `6'0x32 = code for character '1'0x32 = code for character '1'□ A 32 bit IEEE 754 floating point number

s=0, E=01100100, S=01101100011000100110001This is a normalized number so E is biased.

27

 Consider building a floating point number system like the IEEE754 standard on 8 bit only, with 3 bits being reserved for the exponent.
 What is the value of the bias?

3

What is the representation of 0?

0 000 0000

What is the representation of -4?

 $-4 = -1.0 \times 2^2$

S=1, F= 0 and the biased exponent must be

E - 3 = 2 or E = +5

So - 4 = 1 101 0000

What is the next value representable after -4?

1 101 0001 = - 4.25 so we can see that 4 bits
for the significand is not accurate enough
What does the byte 1 111 1011 represent? - NAN
What is the representation of -∞? 1 111 0000

2's complement representation for signed numbers Floating-point numbers

Representation follows closely the **scientific notation** Almost all computers, including MIPS, follow **IEEE 754 standard**

Single-precision floating-point representation takes 32 bits
 Double-precision floating-point representation takes 64 bits

• Overflow and underflow in signed integer and floating number

29