
Comp2611 Fall 2015

Data Representation

COMP2611: Computer Organization

COMP2611 Fall 2015 Data Representation

2

1. Binary numbers and

2’s Complement

COMP2611 Fall 2015 Data Representation

3 Numbers

 Bits: are the basis for binary number representation in digital
computers

 What you will learn here:

 How to represent negative integer numbers?

 How to represent fractions and real numbers?

 What is a representable range of numbers in a computer?

 How to handle numbers that go beyond the representable range?

 To be covered in Computer Arithmetic:

 Arithmetic operations: How to add, subtract, multiply, divide
binary numbers

 How to build the hardware that takes care of arithmetic operations

COMP2611 Fall 2015 Data Representation

4 Base, Representation and Value

 Numbers can be represented in any base

Human: decimal (base 10, has 10 digits 0,1,…,9)

Computer: binary (base 2, has 2 digits, 0,1)

 Positional Notation: value of the ith digit d is d x Basei

 11012 = (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20) 10 = 1310

 Bits are grouped and numbered 0, 1, 2, 3 … from right to the left:

Byte: a group of 8 bits

Word: a group of 32 or 64 bits

 Value of the 32-bit integer binary numbers =

(b31 x 231) + (b30 x 230) + … + (b1 x 21) + (b0 x 20)

. . . 28 29 30 31 0 1 2 3

least significant bit (LSb) most significant bit (MSb)

. . .

COMP2611 Fall 2015 Data Representation

5 2's Complement for signed integer numbers

 All computers use 2's complement representation for signed numbers

 The most significant bit is called the sign bit:

When it is 0 the number is non-negative

When it is 1 the number is negative

The positive half uses the same representation as before

The negative half uses the conversion from the positive value
illustrated below:

Ex: What is the representation of -6 in 2’s complement on 4 bits?

 0110
2
 = 6

10

 1001
2
 = -7

10

 1010
2
 = -6

10

i) Start from the representation of +6

iii) Add 1 to get 2’s complement

ii) Invert bits to get 1’s complement

How can we represent negative integer values in binary?

COMP2611 Fall 2015 Data Representation

6 Examples

 Ex: What is the representation of -6 in 2’s complement on 8 bits?

 Ex: What is the representation of -6 in 2’s complement on 32 bits?

 0000 0110
2
 = 6

10

1111 1001

2
 = -7

10

1111 1010

2
 = -6

10

i) Representation of +6

ii) Invert:

iii) Add 1

 0000 0000 0000 0000 0000 0000 0000 0110
2
 = 6

10

 1111 1111 1111 1111 1111 1111 1111 1001
2
 = -7

10

 1111 1111 1111 1111 1111 1111 1111 1010
2
 = -6

10

i) Start from the representation of +6

iii) Add 1 to get 2’s complement

ii) Invert bits to get 1’s complement

More on 2’s Complement

 1’s complement

 MSb as in sign

 Invert all the other bits

 Given a positive number, negate all bits to get negative equivalent

 We don’t need 2 representations for 0

 2’s complement = 1’s complement + 1

COMP2611 Fall 2015 Data Representation

7

COMP2611 Fall 2015 Data Representation

8 Why invert and add 1 works?

 In One’s Complement we have: if then

 In 2’s complement 111…1112 = -1, therefore

x + x =1111...1112

x1x

11111...111xx 2

x = 0 x =1

COMP2611 Fall 2015 Data Representation

9 Representable Range

 Largest integer represented by a 32 bit word:
0111 1111 1111 1111 1111 1111 1111 11112 = (231 – 1)10 = 2,147,483,64710

 Smallest integer represented by a 32 bit word:
1000 0000 0000 0000 0000 0000 0000 00002 = -231

10 = -2,147,483,64810

 Example: what is largest and smallest integer represented by 8 bits
(16 bits)
 Largest integer

 Smallest integer

0111 11112 = 0x7F = 127 = 128 – 1 = 27 – 1

0111 1111 1111 11112 = 0x7FFF = 32767 = 32768 – 1 = 215 – 1

1000 00002

Invert and add 1: 0111 11112 + 1 = 1000 00002 = 27 = 128

=> - 128

1000 0000 0000 00002

Invert – add 1: 0111 1111 1111 11112 + 1 = 0x8000 = 215 = 32768

=> - 32768

Overflow and Underflow in Signed Integer

 Given the number of bits used in representing a signed integer

 Overflow (signed integer)

The value is bigger than the largest integer that can be
represented

 Underflow (signed integer)

The value is smaller than the smallest integer that can be
represented

COMP2611 Fall 2015 Data Representation

10

Underflow Overflow Representable range Representable range

Large negative Large positive zero

COMP2611 Fall 2015 Data Representation

11 Signed and Unsigned Numbers

 Signed numbers

negative or non-negative integers, e.g. int in C/C++

 Unsigned numbers

non-negative integers, e.g. unsigned int in C/C++

 Ranges for signed and unsigned numbers

32 bit words signed:

• from

 0111 1111 1111 1111 1111 1111 1111 11112 = (231 – 1)10 = 2,147,483,64710

• to

 1000 0000 0000 0000 0000 0000 0000 00002 = -231
10 = -2,147,483,64810

32 bit words unsigned:

• from
 0000 0000 0000 0000 0000 0000 0000 00002 = 010

• to
 1111 1111 1111 1111 1111 1111 1111 11112 = (232 – 1)10 = 4,294,967,29510

COMP2611 Fall 2015 Data Representation

12 Sign Extension

 Consider using a cast in C/C++ on a 32 bit machine
 int i; /* signed integer represented on 32 bits */

 char a; /* Character represented on 8 bits */

 i = (int) a;

 What are the values of upper 24 bits in i?

 Similar things happen in hardware when an instruction loads a 16 bit
number into a 32 bit register (hardware variable)

 Bits 0~15 of the register will contain the 16-bit value

 What should be put in the remaining 16 bits (16~31) of the register?

 Zero extension fills missing bits with 0

Bitwise logical operations (e.g. bitwise AND, bitwise OR)

Casting unsigned numbers to larger width

 Sign extension is a way to extend signed integer to more bits

. . . 28 29 30 31 0 1 2 3 . . . 15

.

COMP2611 Fall 2015 Data Representation

13 Sign Extension

 Bits 0~15 of the register will contain the 16bit value

 What should be put in the remaining 16 bits (16~31) of the register?

 ? ? ? ? 1 1 1 1 1 0

 Depends on the sign of the 16 bit number

If sign is 0 then fill with 0

If sign is 1 then fill with 1

 For example:

2 (16 bits -> 32 bits):

0000 0000 0000 0010 -> 0000 0000 0000 0000 0000 0000 0000 0010

-2 (16 bits -> 32 bits):

1111 1111 1111 1110 -> 1111 1111 1111 1111 1111 1111 1111 1110

 Does sign extension preserve the same value?

COMP2611 Fall 2015 Data Representation

14

2. Floating Point Numbers

COMP2611 Fall 2015 Data Representation

15 Why Floating Point?

 In addition to signed and unsigned integers, we also need to
represent

Numbers with fractions (called real numbers in mathematics)

• e.g. 3.1416

Very small numbers

• e.g., 0.00000000001

Very large numbers

• e.g., 1.23456 x 1010 (a number a 32-bit integer can’t represent)

 In decimal representation, we have decimal point

 In binary representation, we call it binary point

101.112 = (1 x 22) + (0 x 21) + (1 x 20) + (1 x 2-1) + (1 x 2-2) 10
 = 5.7510

 Such numbers are called floating point in computer arithmetic

 Because the binary point is not fixed in the representation

COMP2611 Fall 2015 Data Representation

16 Scientific Notation & Normalized Scientific Notation

 Scientific notation

A single digit to the left of the decimal point

e.g. 1.23 x 10-3, 0.5 x 105

 Normalized scientific notation

Scientific notation with no leading 0’s

e.g. 1.23 x 10-3, 5.0 x 104

 Binary numbers can also be represented in scientific notation

 All normalized binary numbers always start with a 1
1. 𝑥𝑥𝑥 …𝑥𝑥𝑥𝑡𝑤𝑜 × 2𝑦𝑦𝑦…𝑦𝑦𝑦𝑡𝑤𝑜

 Example 101.112 = 1.01112 × 2102

COMP2611 Fall 2015 Data Representation

17 Single-Precision Floating-Point Representation

 Single-precision uses 32 bits

 Sign-and-magnitude representation:

 Interpretation

S = sign; F = significand; E = exponent

Value represented = (-1)
s
x F x 2

E

Roughly gives 7 decimal digits in precision

Exponent scale of about 10-38 to 10+38

 Compromise between sizes of exponent and significand fields:

Increase size of exponent increase representable range

Increase size of significand increase accuracy

1 2 3 4 5 6 7

Significand/Mantissa exponent s

0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8 bits 23 bits 1 bit

COMP2611 Fall 2015 Data Representation

18 Double-Precision Floating-Point Representation

 Double-precision floating-point uses 64 bits

In 32 bit architectures like MIPS, each double-precision number
requires two MIPS words

11 bits for exponent, 52 bits for significand

 Provides precision of about 16 decimals

 Exponent scale from 10-308 to 10+308

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Significand/Mantissa

19 28 29 30

Exponent s

20 21 22 23 24 25 26 27 31

11 bits 20 bits 1 bit

Significand/Mantissa (continued)

32 bits

COMP2611 Fall 2015 Data Representation

19 IEEE 754 Floating-Point Standard

 Most computers use this standard for both single and double precision

 Why use a standard floating-point representation?

 Simplify porting floating-point programs across different computers

 To pack even more bits into the significand

This standard makes the leading 1 bit (in 1.xx … xxx) implicit

Interpretation: (-1)
s
x (1 + 0.significand) x 2

E

Effective number of bits used for representing the significand:

• 24 (i.e., 23 + 1) – for single precision

• 53 (i.e., 52 + 1) – for double precision

Special case:

• Since 0 has no leading 1, it is given the reserved exponent
value 0 so that the hardware does not attach a leading 1 to it

COMP2611 Fall 2015 Data Representation

20 IEEE 754 Floating-Point Standard

 Computation of significand:

The significand bits are denoted as s

1
, s

2
, s

3
, ..., from left to right

 To allow quick comparisons in hardware implementation:

The sign is in the most significant bit

The exponent is placed before the significand

 (Comparisons mean “less than”, “greater than”, “equal to zero”)

 How to represent a NEGATIVE exponent?

Biased exponent: a bias is implicitly added to the exponent

(-1)
s
x (1 + 0.significand) x 2

(E-bias)

bias = 127 for single precision, bias = 1023 for double precision

The most negative exponent = 0
2
, the most positive = 11...11

2

...2s2s2sdSignifican 3
3

2
2

1
1

COMP2611 Fall 2015 Data Representation

21 Example

 What decimal number is represented by this word (single precision)?

 Answer:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 0 1 0 0 0 0 0 0 1 1

0.5

425.1

225.11

2)25.01()1(

2)1()1(

2

)127129(1

)(

BiasEs dSignifican

COMP2611 Fall 2015 Data Representation

22 Example

 Give the binary representation of -0.75
10

 in single & double precisions

 Answer

-0.75
10

 = -0.11
2

0.75 * 2 = 1.50, S1 = 1

0.50 * 2 = 1.00, S2 = 1; stop because the fraction is 0.00

Scientific notation: -0.11
2
 x 20

Normalized scientific notation: -1.1
2
 x 2-1

Sign = 1 (negative), exponent = -1

Single precision:

S = 1, E = 01111110, significand = 100...00 (23 bits)

 = -1+127, (127 is the bias)

Double precision:

S = 1, E = 01111111110, significand = 100...00 (52 bits)

 = -1+1023, (1023 is the bias)

COMP2611 Fall 2015 Data Representation

23 IEEE 754 Standard for Floating Point Arithmetic

)2(
126).0()1(
 Fs

)2(
127).1()1(

EFs
)()1(s

Single precision:

Double precision:

1

non-numbers
e.g. 0/0 ,

≠ 0

0 0

2047 1 - 2046 0 Exponent
Significand

)2(
1022).0()1(
 Fs

)2(
1023).1()1(

EFs
)()1(s

1

non-numbers
e.g. 0/0 ,

≠ 0

0 0

255 1 - 254 0 Exponent
Significand

Normalized Denormalized

0 10000001 10100000000000000000000 =

1 10000001 10100000000000000000000 =

0 00000001 00000000000000000000000 =

0 00000000 10000000000000000000000 =

0 10000000 00000000000000000000000 =

NaN 1 11111111 01001100010001000001000 =

NaN (Not a Number) 0 11111111 01001100010001000001000 =

+ infinity 0 11111111 00000000000000000000000 =

- infinity 1 11111111 00000000000000000000000 =

-0 1 00000000 00000000000000000000000 =

0 00000000 00000000000000000000001 =

0 0 00000000 00000000000000000000000 =

COMP2611 Fall 2015 Data Representation

24 Example

2)2(
127128)0.1(

2

5.6)2(
127129)101.1(

2

5.6)2(
127129)101.1(

2

)2(
126

)2(
1271)0.1(

2

)2(
127

)2(
126)1.0(

2

)2(
149

)2(
126

)2(
23

COMP2611 Fall 2015 Data Representation

25 Overflow and Underflow in Floating Point

 Overflow (floating-point)

A positive exponent becomes too large to fit in the exponent field

 Underflow (floating-point)

A negative exponent becomes too large to fit in the exponent field

Overflow Overflow Representable range Representable range

Large negative Large positive close to zero

underflow

COMP2611 Fall 2015 Data Representation

26 Communicating with People

 How to represent Characters

Characters are unsigned bytes e.g., in C++ Char

Usually follow the ASCII standard

Uses 8 bits unsigned to represent a character

COMP2611 Fall 2015 Data Representation

27 Exercises

 What does the following 32 bit pattern represent: 0x32363131

 If it were a 2’s complement integer

 the MSb is 0 therefore this is a positive number

 evaluation left as an exercise

 An unsigned number

Same value as above

 A sequence of ASCII encoded bytes: 2611

Checking the ascii table gives:

 0x32 = code for character ‘2’

 0x36 = code for character ‘6’

 0x32 = code for character ‘1’

 0x32 = code for character ‘1’

 A 32 bit IEEE 754 floating point number

 s= 0, E = 01100100, S = 01101100011000100110001

 This is a normalized number so E is biased.

COMP2611 Fall 2015 Data Representation

28 Exercises

 Consider building a floating point number system like the IEEE754
standard on 8 bit only, with 3 bits being reserved for the exponent.

What is the value of the bias?

 3

What is the representation of 0?

 0 000 0000

What is the representation of -4?

 -4 = - 1.0 x 22

 S=1, F= 0 and the biased exponent must be

 E – 3 = 2 or E = +5

 So - 4 = 1 101 0000

What is the next value representable after – 4?

 1 101 0001 = - 4.25 so we can see that 4 bits

 for the significand is not accurate enough

What does the byte 1 111 1011 represent? - NAN

What is the representation of -∞? 1 111 0000

COMP2611 Fall 2015 Data Representation

29 Key Concepts to Remember

 2's complement representation for signed numbers

 Floating-point numbers

Representation follows closely the scientific notation

Almost all computers, including MIPS, follow IEEE 754 standard

 Single-precision floating-point representation takes 32 bits

 Double-precision floating-point representation takes 64 bits

 Overflow and underflow in signed integer and floating number

