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1. Binary numbers and  

2’s Complement 
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3 Numbers 

 Bits: are the basis for binary number representation in digital 
computers 

 

 What you will learn here: 

 How to represent negative integer numbers? 

 How to represent fractions and real numbers? 

 What is a representable range of numbers in a computer? 

 How to handle numbers that go beyond the representable range? 

 

 To be covered in Computer Arithmetic: 

 Arithmetic operations: How to add, subtract, multiply, divide 
binary numbers 

 How to build the hardware that takes care of arithmetic operations 
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4 Base, Representation and Value 

 Numbers can be represented in any base 

Human: decimal (base 10, has 10 digits 0,1,…,9) 

Computer: binary (base 2, has 2 digits, 0,1) 

 Positional Notation: value of the ith digit d is d x Basei 

 11012 = (1 x 23) + ( 1 x 22 )  + ( 0 x 21 ) + ( 1 x 20 ) 10 = 1310 

 

 Bits are grouped and numbered 0, 1, 2, 3 … from right to the left: 

Byte: a group of 8 bits 

Word: a group of 32 or 64 bits 

 

 

 

 

 

 Value of the 32-bit integer binary numbers = 

(b31 x 231) + (b30 x 230) +  … + (b1 x 21) + (b0 x 20)  

. . . 28 29 30 31 0 1 2 3 

least significant bit (LSb) most significant bit (MSb) 

. . . 
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5 2's Complement for signed integer numbers 

 

 All computers use 2's complement representation for signed numbers 

 The most significant bit is called the sign bit:  

When it is 0 the number is non-negative  

When it is 1 the number is negative 

The positive half uses the same representation as before 

The negative half uses the conversion from the positive value 
illustrated below: 

Ex: What is the representation of -6 in 2’s complement on 4 bits? 

 

 

 

 

 
 

    

 0110
2
  =   6

10 

 

 

 1001
2
  =  -7

10 

 

 

 1010
2
  =  -6

10 

i)  Start from the representation of +6 

iii) Add 1 to get 2’s complement 

ii) Invert bits to get 1’s complement 

How can we represent negative integer values in binary? 



COMP2611 Fall 2015 Data Representation 

6 Examples 

 Ex: What is the representation of -6 in 2’s complement on 8 bits? 

 

 

 

 

 

 Ex: What is the representation of -6 in 2’s complement on 32 bits? 

 

 

 

 

 
 

       0000 0110
2
  =   6

10 

   

   
1111 1001

2
  =  -7

10 

    

   
1111 1010

2
  =  -6

10 

i) Representation of +6 

 

ii) Invert:     

 

iii) Add 1 

    

 0000 0000 0000 0000 0000 0000 0000 0110
2
  =   6

10 

 

 

 1111 1111 1111 1111 1111 1111 1111 1001
2
  =  -7

10 

 

 

 1111 1111 1111 1111 1111 1111 1111 1010
2
  =  -6

10 

i)  Start from the representation of +6 

iii) Add 1 to get 2’s complement 

ii) Invert bits to get 1’s complement 



More on 2’s Complement 

 1’s complement 

 MSb as in sign 

 Invert all the other bits 

 Given a positive number, negate all bits to get negative equivalent 

 

 

 

 

 

 

 

 

 

 

 We don’t need 2 representations for 0 

 2’s complement = 1’s complement + 1 
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8 Why invert and add 1 works? 

 

 In One’s Complement we have: if             then  

 

 

 

 In 2’s complement 111…1112 = -1, therefore  

 

 

 

 

 

 

 

 

 
 

x + x =1111...1112

x1x

11111...111xx 2





x = 0 x =1
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9 Representable Range 

 Largest integer represented by a 32 bit word: 
0111 1111 1111 1111 1111 1111 1111 11112 =  (231 – 1)10 = 2,147,483,64710 

 Smallest integer represented by a 32 bit word: 
1000 0000 0000 0000 0000 0000 0000 00002 = -231

10 =  -2,147,483,64810 

 

 Example: what is largest and smallest integer represented by 8 bits 
(16 bits) 
 Largest integer  

 

 

 

 Smallest integer 

   

0111 11112 =  0x7F = 127   = 128 – 1 = 27 – 1 

0111 1111 1111 11112 = 0x7FFF = 32767 = 32768 – 1 = 215 – 1 

1000 00002  

Invert and add 1:  0111 11112  + 1 = 1000 00002 = 27 = 128   

=>   - 128 

1000 0000 0000 00002  

Invert – add 1:  0111 1111 1111 11112  + 1 = 0x8000 = 215 = 32768  

=>   - 32768 



Overflow and Underflow in Signed Integer 

 Given the number of bits used in representing a signed integer 

 Overflow (signed integer) 

The value is bigger than the largest integer that can be 
represented 

 Underflow (signed integer) 

The value is smaller than the smallest integer that can be 
represented 
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Underflow Overflow Representable range Representable range 

Large negative Large positive zero 
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11 Signed and Unsigned Numbers 

 Signed numbers 

negative or non-negative integers, e.g. int in C/C++ 

 Unsigned numbers 

non-negative integers, e.g. unsigned int in C/C++ 
 

 Ranges for signed and unsigned numbers 

32 bit words signed: 

• from 

  0111 1111 1111 1111 1111 1111 1111 11112 =  (231 – 1)10 = 2,147,483,64710 

•  to  

  1000 0000 0000 0000 0000 0000 0000 00002 = -231
10       =  -2,147,483,64810 

32 bit words unsigned: 

• from 
  0000 0000 0000 0000 0000 0000 0000 00002 = 010 

• to  
  1111 1111 1111 1111 1111 1111 1111 11112 =  (232 – 1)10 = 4,294,967,29510 
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12 Sign Extension 

 Consider using a cast in C/C++ on a 32 bit machine 
 int i;  /* signed integer represented on 32 bits */ 

 char a; /* Character represented on 8 bits */ 

 i = (int) a; 

 What are the values of upper 24 bits in i? 

 

 Similar things happen in hardware when an instruction loads a 16 bit 
number into a 32 bit register (hardware variable) 

 Bits 0~15 of the register will contain the 16-bit value 

 What should be put in the remaining 16 bits (16~31) of the register? 

 

 Zero extension fills missing bits with 0 

Bitwise logical operations (e.g. bitwise AND, bitwise OR) 

Casting unsigned numbers to larger width  

 

 Sign extension is a way to extend signed integer to more bits 

 



. . . 28 29 30 31 0 1 2 3 . . . 15 

. . . . . . 
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13 Sign Extension 

 Bits 0~15 of the register will contain the 16bit value 

 What should be put in the remaining 16 bits (16~31) of the register? 

 

 

             ?  ?  ?  ?                         1  1                         1  1   1  0 

                         

 Depends on the sign of the 16 bit number 

If sign is 0 then fill with 0 

If sign is 1 then fill with 1 

 

 For example: 

2 (16 bits -> 32 bits): 

0000 0000 0000 0010  ->  0000 0000 0000 0000 0000 0000 0000 0010 

-2 (16 bits -> 32 bits):  

1111 1111 1111 1110  ->  1111 1111 1111 1111 1111 1111 1111 1110 

 

 Does sign extension preserve the same value? 

 



COMP2611 Fall 2015 Data Representation 

14 

2.  Floating Point Numbers 
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15 Why Floating Point? 

 In addition to signed and unsigned integers, we also need to 
represent 

Numbers with fractions (called real numbers in mathematics) 

• e.g. 3.1416 

Very small numbers 

• e.g., 0.00000000001 

Very large numbers 

• e.g., 1.23456 x 1010 (a number a 32-bit integer can’t represent) 

 

 In decimal representation, we have decimal point 

 In binary representation, we call it binary point 

101.112 = (1 x 22) + ( 0 x 21 )  + ( 1 x 20 ) + ( 1 x 2-1 ) + ( 1 x 2-2 ) 10
 = 5.7510 

 

 Such numbers are called floating point in computer arithmetic 

 Because the binary point is not fixed in the representation 
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16 Scientific Notation & Normalized Scientific Notation 

 Scientific notation 

A single digit to the left of the decimal point 

e.g. 1.23 x 10-3, 0.5 x 105 

 Normalized scientific notation  

Scientific notation with no leading 0’s 

e.g. 1.23 x 10-3, 5.0 x 104 

 

 Binary numbers can also be represented in scientific notation 

 All normalized binary numbers always start with a 1 
1. 𝑥𝑥𝑥 …𝑥𝑥𝑥𝑡𝑤𝑜 × 2𝑦𝑦𝑦…𝑦𝑦𝑦𝑡𝑤𝑜 

 

 Example 101.112 = 1.01112 × 2102  
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17 Single-Precision Floating-Point Representation 

 Single-precision uses 32 bits 

 Sign-and-magnitude representation: 

 

 

 

 

 Interpretation 

S = sign; F = significand; E = exponent 

Value represented = (-1)
s 
x F x 2

E 

Roughly gives 7 decimal digits in precision 

Exponent scale of about 10-38 to 10+38  

 

 Compromise between sizes of exponent and significand fields: 

Increase size of exponent  increase representable range 

Increase size of significand  increase accuracy 

1 2 3 4 5 6 7 

Significand/Mantissa exponent s 

0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

8 bits 23 bits 1 bit 
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18 Double-Precision Floating-Point Representation 

 Double-precision floating-point uses 64 bits 

In 32 bit architectures like MIPS, each double-precision number 
requires two MIPS words 

11 bits for exponent, 52 bits for significand 

 

 

 

 

 

 

 Provides precision of about 16 decimals 

 Exponent scale from  10-308 to 10+308 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Significand/Mantissa 

19 28 29 30 

Exponent s 

20 21 22 23 24 25 26 27 31 

11 bits 20 bits 1 bit 

Significand/Mantissa (continued) 

32 bits 
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19 IEEE 754 Floating-Point Standard 

 Most computers use this standard for both single and double precision 

 

 Why use a standard floating-point representation? 

 Simplify porting floating-point programs across different computers 

 

 To pack even more bits into the significand 

This standard makes the leading 1 bit (in 1.xx … xxx) implicit 

Interpretation: (-1)
s 
x (1 + 0.significand) x 2

E 

Effective number of bits used for representing the significand: 

• 24 (i.e., 23 + 1) – for single precision 

• 53 (i.e., 52 + 1) – for double precision 

Special case: 

• Since 0 has no leading 1, it is given the reserved exponent 
value 0 so that the hardware does not attach a leading 1 to it 
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20 IEEE 754 Floating-Point Standard 

 Computation of significand: 

 
The significand bits are denoted as s

1
, s

2
, s

3
, ..., from left to right 

 

 To allow quick comparisons in hardware implementation: 

The sign is in the most significant bit 

The exponent is placed before the significand 

 (Comparisons mean “less than”, “greater than”, “equal to zero”) 

 

 How to represent a NEGATIVE exponent? 

Biased exponent: a bias is implicitly added to the exponent 
 

(-1)
s 
x (1 + 0.significand) x 2

(E-bias) 

 

bias = 127 for single precision, bias = 1023 for double precision 

The most negative exponent = 0
2
, the most positive = 11...11

2 

...2s2s2sdSignifican 3
3

2
2

1
1  
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21 Example 

 What decimal number is represented by this word (single precision)? 

 

 

 

 Answer: 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 

0.5

425.1

225.11

2)25.01()1(

2)1()1(   

2

)127129(1

)(













BiasEs dSignifican
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22 Example 

 Give the binary representation of -0.75
10

 in single & double precisions 

 

 Answer 

-0.75
10

 = -0.11
2 

0.75 * 2 = 1.50, S1 = 1 

0.50 * 2 = 1.00, S2 = 1; stop because the fraction is 0.00 

Scientific notation: -0.11
2
 x 20 

Normalized scientific notation: -1.1
2
 x 2-1 

Sign = 1 (negative), exponent = -1 

Single precision: 

S = 1, E = 01111110, significand = 100...00 (23 bits) 

   = -1+127, (127 is the bias) 

Double precision: 

S = 1, E = 01111111110, significand = 100...00 (52 bits) 

  = -1+1023, (1023 is the bias) 
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23 IEEE 754 Standard for Floating Point Arithmetic 

)2(
126).0()1(
 Fs

)2(
127).1()1(


EFs
)()1(  s

Single precision: 
 
 
 
 
 
 
 
 
Double precision: 

1

non-numbers 
e.g. 0/0 , 

≠ 0 

0 0 

2047 1 - 2046 0                  Exponent 
Significand 

)2(
1022).0()1(
 Fs

)2(
1023).1()1(


EFs
)()1(  s

1

non-numbers 
e.g. 0/0 , 

≠ 0 

0 0 

255 1 - 254 0                  Exponent 
Significand 

Normalized Denormalized 



0 10000001 10100000000000000000000 = 

1 10000001 10100000000000000000000 = 

0 00000001 00000000000000000000000 = 

0 00000000 10000000000000000000000 = 

0 10000000 00000000000000000000000 = 

NaN 1 11111111 01001100010001000001000 = 

NaN (Not a Number) 0 11111111 01001100010001000001000 = 

+ infinity 0 11111111 00000000000000000000000 = 

-  infinity 1 11111111 00000000000000000000000 = 

-0 1 00000000 00000000000000000000000 = 

0 00000000 00000000000000000000001 = 
 

0 0 00000000 00000000000000000000000 = 
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24 Example 

2)2(
127128)0.1(

2


5.6)2(
127129)101.1(

2


5.6)2(
127129)101.1(

2


)2(
126

)2(
1271)0.1(

2



)2(
127

)2(
126)1.0(

2



)2(
149

)2(
126

)2(
23 
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25 Overflow and Underflow in Floating Point 

 Overflow (floating-point) 

A positive exponent becomes too large to fit in the exponent field 

 

 Underflow (floating-point) 

A negative exponent becomes too large to fit in the exponent field 

 

 

 

 

 

Overflow Overflow Representable range Representable range 

Large negative Large positive close to zero 

underflow 
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26 Communicating with People 

 How to represent Characters 

Characters are unsigned bytes e.g., in C++ Char 

Usually follow the ASCII standard 

Uses 8 bits unsigned to represent a character 
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27 Exercises 

 What does the following 32 bit pattern represent: 0x32363131 

 If it were a 2’s complement integer 

   the MSb is 0 therefore this is a positive number 

 evaluation left as an exercise 

 An unsigned number 

Same value as above 

 A sequence of ASCII encoded bytes: 2611 

Checking the ascii table gives:  

 0x32 = code for character ‘2’ 

 0x36 = code for character ‘6’ 

 0x32 = code for character ‘1’ 

 0x32 = code for character ‘1’ 

 A 32 bit IEEE 754 floating point number 

  s= 0, E = 01100100, S = 01101100011000100110001 

 This is a normalized number so E is biased. 



COMP2611 Fall 2015 Data Representation 

28 Exercises 

 Consider building a floating point number system like the IEEE754 
standard on 8 bit only, with 3 bits being reserved for the exponent.  

What is the value of the bias? 

 3 

What is the representation of 0? 

 0 000 0000 

What is the representation of -4? 

  -4 = - 1.0 x 22   

 S=1, F= 0 and the biased exponent must be  

 E – 3 = 2 or E = +5 

 So - 4 =  1 101 0000 

What is the next value representable after – 4? 

  1 101 0001 = - 4.25 so we can see that 4 bits 

 for the significand is not accurate enough 

What does the byte 1 111 1011 represent?  - NAN 

What is the representation of -∞? 1 111 0000 
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29 Key Concepts to Remember 

 2's complement representation for signed numbers 

 Floating-point numbers  

Representation follows closely the scientific notation 

Almost all computers, including MIPS, follow IEEE 754 standard 
 

 Single-precision floating-point representation takes 32 bits  

 Double-precision floating-point representation takes 64 bits 
 

 Overflow and underflow in signed integer and floating number 


