
COMP2611 Fall 2015

1

Introduction to Digital Logic

Combinational Logic

COMP2611: Computer Organization

Basics of Logic Circuits

 Bits are the basis for binary number representation in digital
computers

 Combining bits into patterns following some conventions or
rules (defined in the ISA) allow for:

 number representations

• Integers,

• Fractions and Real numbers, …

 Instruction encoding

• Operation

• Operands

 How are bits represented at the low level and how are they handled
in the hardware below the ISA?

Introduction to Digital Logic

2

COMP2611 Fall 2015

Basic Operations on Bits

 The electronics inside modern computers are digital: they operate
with only two voltage levels of interest - hence the use of binary
numbers

 Two types of digital logic circuits inside a computer:

 Combinational logic circuits:

• Logic circuits that do not have memory.

• The output depends only on the current input and the circuit.

 Sequential logic circuits:

• Logic circuits that have memory.

• The output depends on both the current input and the value
stored in memory (called state).

 Both rely on some basic logic circuits that implement some
fundamental logic operations

Introduction to Digital Logic

3

COMP2611 Fall 2015

Analog values 0V 0.5V 2.4V 2.9V

Digital values 0 Illegal 1

Logical Operations on Bits

 Three fundamental logic functions defined by their truth table are at
the center of all operations in modern computers:

 NOT

 AND

Introduction to Digital Logic

4

COMP2611 Fall 2015

A NOT A

0 1
1 0

also written
A

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

also written
𝐴 ∙ 𝐵

Input Output

Input values Output values

Logical Operations on Bits

 OR

 NOT, AND and OR can be applied to bit patterns as well:

 The rule applies to each bit position: bit-wise operation

 Example: A=01011, B= 10010

 𝐴 = 10100

 𝐴 + 𝐵 = 11011

 𝐴 ∙ 𝐵 = 00010

Introduction to Digital Logic

5

COMP2611 Fall 2015

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

also written
𝐴 + 𝐵

Logical Operations on Bits

 To simplify the design of circuits other logic functions can be defined
based on the basic ones, notably the XOR (exclusive or)

 XOR (exclusive OR)

 All logic functions can be extended to apply on more than two
operands following the basic rules of Boolean Algebra

Introduction to Digital Logic

6

COMP2611 Fall 2015

also written
𝐴⊕𝐵

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Logic Function

 Example:

 Consider a digital circuit with two single-bit inputs (A, B) and
two single-bit outputs (C, D). The circuit implements:

• C is true if exactly one input is true;

• D is true if exactly two inputs are true.

 Construct the truth table for the circuit

 Construct the logic function for the circuit

Introduction to Digital Logic

7

COMP2611 Fall 2015

BA=D

BA+BABA=C

Computer Arithmetic and Logic operation can be specified via logic functions

A B D C

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Basic Laws of Boolean Algebra

Introduction to Digital Logic

8

COMP2611 Fall 2015

 Identity laws:

 Annihilator (or Zero and one) laws:

 Complement laws:

 Commutativity laws:

 Associativity laws:

 Distributivity laws:

A=1A A=0+A

0=0A 1=1+A

0=AA 1=A+A

AB=BA A+B=B+A

CB)(A=C)(BA C+B)+(A=C)+(B+A

)()()()()()(CABACBA CABACBA

Using all these laws, we can simplify logic and arithmetic functions

Additional Laws of Boolean Algebra

Introduction to Digital Logic

9

COMP2611 Fall 2015

 Idempotence:

 Absorption laws:

 De Morgan Laws:

A=BAA A=BA+A)()(

B + A = BA

 BA=B+A

A=AA A=AA

Digital Logic

 At the base of modern computers is the MOS (Metal Oxide
Semiconductor) Transistor

 Transistor:

 Three terminals: Gate, Source and Drain

 Two types of transistors N (left) and P(right)

 Operates as an Electronic switch

 For the N-type: if the Gate is powered, then the path from source
to drain acts like a wire otherwise the path is broken.

Introduction to Digital Logic

10

COMP2611 Fall 2015

Gate

Source

Drain

Gate

Source

Drain

Gate

Source

Drain
Drain Source

Drain Source

GND

Gate = 1

Gate = 0

2.9V

Logic gates

 We can build basic logic circuits (logic gates) for the three basic logic
functions (NOT, AND, OR) by using several transistors

 NOT Gate (CMOS Inverter)

Introduction to Digital Logic

11

A NOT A

0 1

1 0
A

Not A

 A NOT A

 0V 2.9V

2.9V 0V

Truth Table

Digital Inverter Using CMOS

Symbolic representation of the NOT Gate

Logic Gates

 AND Gate OR Gate

COMP2611 Fall 2015

12

Symbolic representation of the AND Gate Symbolic representation of the OR Gate

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

Truth Table

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Truth Table

Construct a 1-bit Half Adder

 Continue the example on Page 7

Introduction to Digital Logic

13

COMP2611 Fall 2015

BA=D

BA+BABA=C

A B D C

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Truth Table

Logic Function Digital Circuit

Combinational Logic

 Combinational logic circuits:

 Logic circuits that do not have memory.

 The output depends only on the current input.

 They can be specified fully with a truth table or a logic equation

 Other than logic gates that are the most basic building blocks, there
also exist some higher-level basic building blocks that are also
commonly used:

 Decoders/encoders

 Multiplexors

 Two-level logic and PLAs

 These building blocks can be implemented using AND, OR, and NOT
gates only.

COMP2611 Fall 2015 Introduction to Digital Logic

14

Decoder

 A decoder (N-to-2N decoder) is a logical block with an N-bit input
and 2N 1-bit outputs. The output that corresponds to the input bit
pattern is true while all other outputs are false.

 Example (3-to-8 decoder):

 An encoder performs the inverse function of a decoder, taking 2N
inputs and producing an N-bit output.

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Decoder

a. A 3-bit decoder

3

COMP2611 Fall 2015 Introduction to Digital Logic

15

Multiplexor

 A multiplexor (or selector) selects one of the data inputs as output
by a control input value.

 A multiplexor can have an arbitrary number of data inputs:

 Two data inputs require one selector input.

 N data inputs require selector inputs.

 Example (2-input multiplexor):

 N log
2

)SB()SA(C

C

A

B

S

1

A

C

B

S

M
u
x

0

COMP2611 Fall 2015 Introduction to Digital Logic

16

Data inputs

Selector inputs

Two-Level Logic

 Any logic function can be expressed in a canonical form as a two-
level representation:

 Every input is either a variable or its negated form.

 One level consists of AND gates only.

 The other level consists of OR gates only.

 Sum-of-products representation:

 E.g.,

 More commonly used than product-of-sums representation.

 Product-of-sums representation:

 E.g.,

)ACB()BCA()CBA(E

)ACB()BCA()CBA(E

COMP2611 Fall 2015 Introduction to Digital Logic

17

Example

 Show the sum-of-products representation for the following truth
table:

 Answer:

 It’s a 3-person voting system

 Minterm: a group of variables ANDed where either the variable or its
negation is represented

 Any logic function can be represented as a SUM of minterms

Inputs Output
A B C D
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

)()()()(CBACBACBACBAD

COMP2611 Fall 2015 Introduction to Digital Logic

18

Only those table entries for which
the output is 1 generate corresponding
terms in the equation

Programmable Logic Arrays

 A programmable logic array (PLA) is a gate-level implementation
of the two-level representation for any set of logic functions,
which corresponds to a truth table with multiple output columns.

 A PLA corresponds to the sum-of-products representation.

AND plane

OR plane

AND gates

OR gates

Product terms

Outputs

Inputs

COMP2611 Fall 2015 Introduction to Digital Logic

19

Example - Problem

 Show a PLA implementation of this example:

 Sum-of-product representation

Inputs Outputs
A B C D E F
0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

COMP2611 Fall 2015 Introduction to Digital Logic

20

CBAF

CBACBACBAE

CBACBACBACBACBACBACBAD

 There are seven unique product terms with at least one true value in
the output section, and hence there are seven columns in the AND
plane. There are three inputs and hence the number of rows in the
AND plane is three.

 There are three outputs and hence the number of rows in the OR
plane is three.

Example - Answer

D

Outputs

E

F

A
B
C

Inputs

COMP2611 Fall 2015 Introduction to Digital Logic

21

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

AND Plane

OR Plane

Example - Answer (cont'd)

 An equivalent PLA representation:

A

B

C

Inputs

D

E

F

Outputs

AND plane

OR plane

COMP2611 Fall 2015 Introduction to Digital Logic

22

CBAF

CBACBACBAE

CBACBACBACBACBACBACBAD

Simplifying Logic Equations

 Truth tables can grow rapidly in size and become tedious.

 Logic equations are better in this case, however, there are many
different ways of writing a Boolean expression, each of them will lead
to a circuit implementation

 Simplifying Boolean expressions leads to simpler and cheaper circuits
(lesser components)

 There are many formal methods, algorithms and software for
simplifying Boolean expressions

 Karnaugh-Maps (K-maps) is one such method that can be run by
hand for designing simple circuits

COMP2611 Fall 2015 Introduction to Digital Logic

23

K-Maps

 K-Map is a graphical representation of the truth table or logic function

 In a K-map each cell represents one possible minterm

 Cells are arranged following a Gray code i.e., two adjacent cells are
such that the corresponding minterms differ in only one variable

 Examples: K-Map Layouts

COMP2611 Fall 2015 Introduction to Digital Logic

24

B

A
0 1

0 m0 m1

1 m2 m3

BC

A
00 01 11 10

0 m0 m1 m3 m2

1 m4 m5 m7 m6

CD

AB
00 01 11 10

00 m0 m1 m3 m2

01 m4 m5 m7 m6

11 m12 m13 m15 m14

10 m8 m9 m11 m10

K-map Simplification Rules

 Find largest size groups of adjacent cells at 1

 2N (i.e. 1, 2, 4, 8) adjacent cells in each group

 K-map is toroid(i.e., rightmost cells are adjacent to the leftmost cells
and topmost cells are adjacent to bottom cells)

 Larger groups = fewer inputs to the AND gate

 Fewer groups = fewer AND gates and fewer inputs to OR gate

 Best group might not be unique

 Example: Simplify

COMP2611 Fall 2015

25

B

A
0 1

0

1

B

A
0 1

0 0 1

1 1 1

BABABAF

BAF

BA BA

BA BA

K-Map Example

 Simplify the logic expression for the 3-person voting system on page
18

 F = BC + AC + AB

COMP2611 Fall 2015 Introduction to Digital Logic

26

)()()()(CBACBACBACBAD

BC

A
00 01 11 10

0 0 0 1 0

1 0 1 1 1

7-segment Digital Display

 Use 7-segment digital display to display one Hexadecimal digit

 Each segment is represented by a logic function

 Tasks:

 Give the truth table for segment G

• How many inputs needed?

 Deduce the sum-of-products logic equation from the table

 Use K-Map to simplify the logic equation

COMP2611 Fall 2015 Introduction to Digital Logic

27

 Truth Table for segment G (try to fill segment A as exercise):

 Using the table we have 12 minterms for segment G in the logic
expression

COMP2611 Fall 2015 Introduction to Digital Logic

28

Inputs Output

i3 i2 i1 i0 G A

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

 K-Map:

 G = i1i0’ + i3i2’ + i3i0 + i2’i1 + i3’i2i1’

 Conclusion:

 Before simplification we would need 12 AND gates with 4 inputs
each and one OR gate with 12 inputs

 After we only need 3 AND gates with 2 inputs one AND gate with
3 inputs and one OR gate with 4 inputs

COMP2611 Fall 2015 Introduction to Digital Logic

29

i1i0

i3i2

00 01 11 10

00 0 0 1 1

01 1 1 0 1

11 0 1 1 1

10 1 1 1 1

