
COMP2611 Fall 2015 Instruction: Language of the Computer

1

3. More MIPS Instructions

COMP2611 Fall 2015 Instruction: Language of the Computer

2 Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to
make decisions based on input data or values obtained during the

computation

 In high-level programming languages, decision-making instruction:

 if statement

 In MIPS, decision-making instructions (or conditional branches):

 beq (‘branch if equal’):

• e.g. beq reg1, reg2, L1

• go to statement labeled L1 if reg1 and reg2 have the same
value

 bne (‘branch if not equal’):

• e.g. bne reg1, reg2, L1

• go to statement labeled L1 if reg1 and reg2 do not have the
same value

COMP2611 Fall 2015 Instruction: Language of the Computer

3 Example

 In the following C code segment, f, g, h, i, and j are variables:

 if (i == j) goto L1;

 f = g + h;

 L1: f = f – i;

 Assuming that the five variables f through j correspond to five
registers $s0 through $s4, what is the compiled MIPS code?

 Answer:

 beq $s3, $s4, L1 # go to L1 if i==j

 add $s0, $s1, $s2 # f = g + h (skipped if i==j)

L1: sub $s0, $s0, $s3 # f = f – i (always executed)

Notes:

 L1 corresponds to the address of the sub instruction.

COMP2611 Fall 2015 Instruction: Language of the Computer

4 More on Branches

 Compilers frequently create branches and labels where they do not
appear in the programming language.

if (i != j) f = g + h;

f = f – i;

 Avoiding the burden of writing explicit labels and branches is one
benefit of writing in high-level programming languages and is one of
the reasons why coding is faster at that level.

 Besides conditional branches, we also have unconditional jumps:

 j (‘jump’):

• e.g. j L1

• always go to statement labeled L1

this code is another way to
implement the previous
example without using label L1

COMP2611 Fall 2015 Instruction: Language of the Computer

5 Example

 Assume, as before, that the five variables f through j correspond to
registers $s0 through $s4. What is the compiled MIPS code for this?

if (i == j)

 f = g + h;

else if (i == g)

 f = g - h;

else

 f = g + j

 Answer:
 bne $s3, $s4, ElseIf #if(i!=j) goto Elseif

 add $s0, $s1, $s2

 j Exit

ElseIf:bne $s3, $s1, Else #if(i!=j) goto Else

 sub $s0, $s1, $s2

 j Exit

Else: add $s0, $s1, $s4

Exit:

COMP2611 Fall 2015 Instruction: Language of the Computer

6 Example (Cont’d)

 Another Solution:

 beq $s3, $s4, if_match

 beq $s3, $s1, elseif_match

 j else_match

if_match: add $s0, $s1, $s2

 j exit

elseif_match: sub $s0, $s1, $s2

 j exit

else_match: add $s0, $s1, $s4

exit:

 Although this solution is longer, it is more similar to C++ version &
looks closer to a switch-case statement

 Could be easier to debug if you need to check for more conditions

COMP2611 Fall 2015 Instruction: Language of the Computer

7 Loops

 Decisions are important both for

 choosing between two alternatives–found in if statement

 iterating a computation–found in loops

 In loops, decisions are needed to determine when to stop looping

 Commonly used loop constructs in high-level programming languages

 while

 for

COMP2611 Fall 2015 Instruction: Language of the Computer

8 Example

 Here is a traditional loop in C:

 while (save[i] == k) i += 1;

 Assume that i and k correspond to registers $s3 and $s5 and the
base of the array save is in $s6. What is the MIPS assembly code

corresponding to this C Segment?

 Answer:

Loop: sll $t1, $s3, 2 # Temp reg $t1 = 4 * i

 add $t1, $t1, $s6 # $t1 = address of save[i]

 lw $t0, 0($t1) # Temp reg $t0 = save[i]

 bne $t0, $s5, Exit # go to Exit if save[i] != k

 addi $s3, $s3, 1 # i = i + 1

 j Loop

Exit:

COMP2611 Fall 2015 Instruction: Language of the Computer

9 Basic Blocks

 A basic block is a sequence of instructions without branches and
branch targets (except possibly at the end and at the beginning)

 One of the first early phases of compilation is breaking the program
into basic blocks.

basic
block

basic
block

basic
block

COMP2611 Fall 2015 Instruction: Language of the Computer

10 Example of Basic Blocks

 #1
Loop: sll $t1, $s3, 2

 add $t1, $t1, $s6

 lw $t0, 0($t1)

 bne $t0, $s5, Exit

 add $s3, $s3, 1

 j Loop

Exit:

 #2
 bne $s3, $s4, ElsIf

 add $s0, $s1, $s2

 j Exit

ElsIf: bne $s3, $s1, Else

 sub $s0, $s1, $s2

 j Exit

Else: add $s0, $s1, $s4

Exit:

COMP2611 Fall 2015 Instruction: Language of the Computer

11 ‘Less Than’ Test

 Besides testing for equality or inequality, it is often useful to see if a
variable is less than another variable.

 e.g., exit from a loop when the array index is less than a variable

 slt (‘set on less than’):

 slt reg1, reg2, reg3

 register reg1 is set to 1 if the value in reg2 is less than the value
in reg3; otherwise, register reg1 is set to 0

 slti (‘set on less than immediate’)

 slti $t0, $s2, 10 # $t0=1 if $s2 < 10

COMP2611 Fall 2015 Instruction: Language of the Computer

12 Realizing Comparison Operations

 MIPS compilers use beq, bne, slt, slti and the fixed value of 0
(always available by reading register $zero) to create all comparison

operations:

 equal

 not equal

 less than

 less than or equal

 greater than

 greater than or equal

COMP2611 Fall 2015 Instruction: Language of the Computer

13 Example

 Give the MIPS code that tests if variable a (corresponding to register
$s0) is less than variable b (register $s1) and then branch to label L

if the condition holds.

 Answer:

slt $t0, $s0, $s1 # $t0 gets 1 if $s0 < $s1

bne $t0, $zero, L # go to L if $t0 != 0

 Remark:

 Instead of providing a separate ‘branch if less than’ instruction
which will complicate the instruction set, the MIPS architecture
chooses to do this operation using two faster MIPS instructions –
similar for other conditional branches.

COMP2611 Fall 2015 Instruction: Language of the Computer

14 Other Branch Instructions

Branch on greater than or equal to zero

 bgez $s, label # if ($s >= 0)

Branch on greater than zero

 bgtz $s, label # if ($s > 0)

Branch on less than or equal to zero

 blez $s, label # if ($s <= 0)

Branch on less than zero

 bltz $s, label # if ($s < 0)

COMP2611 Fall 2015 Instruction: Language of the Computer

15 ‘Jump Register’ Instruction

 Another unconditional jump instruction:

 jr (‘jump register’):

• e.g. jr reg

• jump to address specified in register reg

 It is usually used for procedure call and case/switch statement

COMP2611 Fall 2015 Instruction: Language of the Computer

16 Exercise

 Consider the program below: What are the values stored in Array1
after the program is executed? (It depends on where ‘jr’ goes)

.data
Array1: .word 4 8 12 16 20

.text
.globl __start
__start:

la $t0, Array1
lw $t1, 4($t0)
lw $t2, 8($t0)
la $s0, Label1
add $s0, $s0, $t1
jr $s0

Label1:
add $t1, $t1, $t1
add $t1, $t2, $t2
sw $t1, 12($t0)

i) What are the values of t1 & t2 ?

ii) If the instruction add $t1, $t1, $t1

 stores at address 10000, what is the

 value of s0 & what jr $s0 does ?

Store at address 10000

iii) Where is this instruction stored ?

COMP2611 Fall 2015 Instruction: Language of the Computer

17 Exercise – Solution

Array1: .word 4 8 12 16 20 Address Value Array element

 t0 4 Array1[0]

 t0+4 8 Array1[1]

 t0+8 12 Array1[2]

 t0+12 16 Array1[3]

 t0+16 20 Array1[4]

la $t0, Array1
lw $t1, 4($t0)
lw $t2, 8($t0)

Array1

i) So, t1 = 8, t2 = 12

la $s0, Label1
add $s0, $s0, $t1
jr $s0

ii) s0 = 10000 after la $s0, Label1 is executed.

 Hence, the next instruction to be run after jr $s0

 is stored at 10000 + 8 = 10008th byte of the memory

Label1:
add $t1, $t1, $t1
add $t1, $t2, $t2
sw $t1, 12($t0)

Address Instruction

 10000 add $t1, $t1, $t1

 10004 add $t1, $t1, $t2

 10008 sw $t1, 12($t0)

Label1

iii) All MIPS instructions are fixed as 4 bytes long. So,

 sw $t1, 12($t0) should be executed after jr $s0

 (2 instructions skipped). Array1[3] = t1 = 8 at the end

COMP2611 Fall 2015 Instruction: Language of the Computer

18

4. Dealing with “Procedure”

COMP2611 Fall 2015 Instruction: Language of the Computer

19 Supporting Procedures in Computer Hardware

 Procedures (also called subroutines) are necessary in any
programming language

 They allow better structuring of programs

 Thus we need mechanisms that allow to jump to the procedure and
to return from it

k = 0;

switch (k){

 case 0 : f = max(i,j);

 i = i + j;

 break;

 case 1: f = max(g,h);

 i = i + j;

 break;

}

int max(int k, int l)

 if (k <= l)

 return l;

 else

 return k;

}

COMP2611 Fall 2015 Instruction: Language of the Computer

20 Supporting Procedures in Computer Hardware

 Necessary steps for executing a procedure:

1. Place the parameters in place where the procedure can get them

2. Transfer control to the procedure

3. Acquire the storage resources needed for the procedure

4. Perform the desired task

5. Place the result value in a place where the caller can access it

6. Return control to the point of origin, since a procedure can be
called from several points in a program

COMP2611 Fall 2015 Instruction: Language of the Computer

21 Registers for Procedures

 Registers for procedure calling:

 $a0-$a3: four argument registers for passing parameters

 $v0-$v1: two value registers for returning values

 $ra: one return address register for returning to the point of

origin

 Program counter (PC) or instruction address register:

 Register that holds address of the current instruction being
executed

 It is updated after executing the current instruction

• How?

• PC = PC + 4 or PC = branch target address

COMP2611 Fall 2015 Instruction: Language of the Computer

22 Instructions for Procedures

 jal (‘jump and link’):

 jal ProcedureAddress

 Two things happen at the same time

1. First, it save the address of the following instruction (i.e., PC
+ 4 as return address) to register $ra

2. Then, jump to address specified by ProcedureAddress

 jr (‘jump register’):

 jr register

 An unconditional jump to the address specified in a register

 Can be used to return from a procedure

• How?

 jr $ra (jumps to the address stored in register $ra)

COMP2611 Fall 2015 Instruction: Language of the Computer

23 Caller and Callee Coordination

 The calling program (caller)

 Passing parameters:

• Puts the parameter values in $a0 - $a3

• Invokes jal X to jump to procedure X

 Procedure X (callee)

 Performs the calculations

 To return the results, place the results in $v0 - $v1

 Returns control to the caller using jr $ra

 Caller picks up the result from $v0 - $v1

COMP2611 Fall 2015 Instruction: Language of the Computer

24 Example

12 instruction1

16 instruction2

20 jal max

24 instruction3

 What gets done here is
 $ra = PC + 4 = 20 + 4 = 24

 PC = addr(max) = 60

max: 60 instruction5

64

68 instruction7

72 instruction8

76 jr $31

instruction6

It means “jr $ra”

COMP2611 Fall 2015 Instruction: Language of the Computer

25 Problem with Nested Procedures

12 instruction1

16 instruction2

20 jal max

24 instruction3

Proc: 80 instruction20
84 instruction21
88 jr $31

What if we replace instruction
7 by another procedure call,
say jal proc?

max: 60 instruction5

64

68 instruction7

72 instruction8

76 jr $31

jal proc
instruction6

Oops! $ra = 72!!!!
Can’t return to line 24

$ra = 72

PC = addr(proc) = 80

 What gets done here is
 $ra = PC + 4 = 20 + 4 = 24

 PC = addr(max) = 60

COMP2611 Fall 2015 Instruction: Language of the Computer

26 Stack: Supporting Procedures in MIPS

 Since procedures are like small programs themselves, they may
need to use the registers, and they may also call other
procedures (nested calls)

 If we don’t save some of the values stored in the registers, they
will be wiped each time we call a new procedure

• e.g. $ra was wiped out in previous example in max(), and we
have no way to return from nested procedure calls

 In MIPS, we need to save the registers by ourselves (some other ISAs
would do it on your behalf)

 The perfect place for this is called a stack

• a memory accessible only from the top (Last In First Out, LIFO)

• placing things on the stack is called push

• removing them is called pop

 push and pop are simply storing and loading words to and
from a specific location in the memory pointed to by the stack
pointer $sp which always points to top of the stack

COMP2611 Fall 2015 Instruction: Language of the Computer

27

72 24

1192 1196 1200

Using Stack to Deal with Nested Procedure

Stack

1200

1196

1192

1188

72

24

$SP

$ra

12 instruction1

16 instruction2

20 jal max

24 instruction3

max: 60 push

64

68 instruction7

72 pop

76 jr $31

jal proc
instruction6

Proc: 80 push
84 instruction21
88 pop
92 jr $31

addi $sp, $sp, -4

sw $ra, 0($sp)

lw $ra, 0($sp)

addi $sp, $sp, 4

addi $sp, $sp, -4

sw $ra, 0($sp)

lw $ra, 0($sp)

addi $sp, $sp, 4

COMP2611 Fall 2015 Instruction: Language of the Computer

28

Heap operation:

 malloc() allocate space on the heap and returns a pointer to it

 free() releases space on the stack to which the pointer points

MIPS Memory Allocation

Stack

Dynamic data

Static data

Text

Reserved

Home of MIPS machine code, or
text segment

For constant and other static variables
static data segment

For data structures that grow and
shrink (e.g., linked lists) heap

stack
$sp  7fff fffc hex

$gp  1000 8000 hex

 1000 0000 hex

pc  0040 0000 hex

0

COMP2611 Fall 2015 Instruction: Language of the Computer

29 Summary of MIPS Architecture Revealed So Far

 MIPS operands:

 32 registers (32 bits each)

 230 memory word locations (32 bits each)

 MIPS instructions:

 Arithmetic: add, sub, addi

 Data transfer: lw, sw

 Logical: and, or, nor, andi, ori, sll, srl

 Conditional branch: beq, bne, slt

 Unconditional jump: j, jr, jal

 MIPS instruction formats:

 R-format, I-format, J-format (used by j and jal; to be explained

later)

COMP2611 Fall 2015 Instruction: Language of the Computer

30

Preserved on call means, the value of those registers should remain the same before and
after the procedure is called

If any of those registers are modified inside the procedure, you should put them into stack
before the procedure is actually executed

MIPS Register Conventions

Name
Register
number

Usage
Preserved
on call?

$zero 0 constant value 0 n.a.

$at 1 reserved for assembler n.a.

$v0-$v1 2-3 values for results and expression evaluation no

$a0-$a3 4-7 arguments no

$t0-$t7 8-15 temporaries no

$s0-$s7 16-23 saved temporaries yes

$t8-$t9 24-25 more temporaries no

$k0-$k1 26-27 reserved for operating system kernel n.a.

$gp 28 pointer to global area yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return address yes

COMP2611 Fall 2015 Instruction: Language of the Computer

31 Communication with People

 Most computers use 8-bit (bytes) to represent characters

 ASCII: American Standard Code for Information Interchange

 Example:

 Notice that character “a” and “A” are assigned with different values!

 Operation with byte: lb (load byte), sb (store byte)

 Example

 lb $t0, 0($sp) # Read byte from source

 sb $s0, 0($gp) # Write byte to destination

ASCII

value

Char-
acter

ASCII

value

Char-
acter

ASCII

value

Char-
acter

ASCII

value

Char-
acter

ASCII

value

Char-
acter

48 0 49 1 65 A 66 B 90 Z

97 a 98 b 32 Space 35 # 42 *

COMP2611 Fall 2015 Instruction: Language of the Computer

32 Strings

 Characters are normally combined into strings

 How to represent a string? Three choices are:

1. First position of a string is reserved to give the length of a string

2. An accompanying variable has the length of the string (as in a
structure)

3. The last position of a string is indicated by a character used to
mark the end of a string

• “C” uses the 3rd choice

• “C” terminates a string with a byte whose value is 0

(null in ASCII)

• Example

 the string ‘Cal’  ASCII 67,97,108,0

COMP2611 Fall 2015 Instruction: Language of the Computer

33 Example: String Copy

 Procedure strcpy() in “C” language

 copies string y to string x using the null byte termination convention

 void strcpy (char x[], char y[])

 {

 int i;

 i = 0;

 while ((x[i] = y[i])!=‘\0’) /* copy & test byte */

 i += 1;

 }

COMP2611 Fall 2015 Instruction: Language of the Computer

34 MIPS Assembly Code

strcpy:

 addi $sp, $sp, -4 # adjust stack for 1 more item
 sw $s0, 0($sp) # save $s0
 add $s0, $zero, $zero # i = 0 + 0
L1:

 add $t1, $s0, $a1 # address of y[i] in $t1
 lb $t2, 0($t1) # $t2 = y[i]
 add $t3, $s0, $a0 # address of x[i] in $t3
 sb $t2, 0($t3) # x[i] = $t2
 beq $t2, $zero, L2 # if y[i]==0, go to L2
 addi $s0, $s0, 1 # i = i + 1
 j L1 # go to L1
L2: # y[i] == 0: end of string;
 lw $s0, 0($sp) # restore old $s0

 addi $sp, $sp, 4 # pop 1 word off the stack
 jr $ra # return

don’t have to multiply i by 4 since x and y
are arrays of bytes, not of words

COMP2611 Fall 2015 Instruction: Language of the Computer

35 Dealing with 32-bit Immediate

 Constants are frequently short and fit into 16-bit field

 But sometimes they are bigger than 16 bits, e.g. 32-bit constant

Problem:

 With instruction learned so far, we cannot set registers’ upper 16bits!

Solution:

 lui (“load upper immediate”)

 e.g. lui reg, constant

 set the upper 16 bits of register reg to the 16-bit value specified
in constant

 Set the lower 16 bits of register reg to zeros

 note that constant should not greater than 216


COMP2611 Fall 2015 Instruction: Language of the Computer

36 Example: Loading a 32-bit Constant

 How to load the 32-bit constant below into register $s0?

 0000 0000 0011 1101 0000 1001 0000 00002 (0x003D0900)

 Solution: (assuming the initial value in $s0 is 0)

 lui $s0, 61 # 6110 = 0000 0000 0011 11012

 # value of $s0 becomes 0000 0000 0011 1101 0000 0000 0000 00002

 ori $s0, $s0, 2304 # 230410 = 0000 1001 0000 00002

 # now, we get the value desired into the register

