
COMP2611 Fall 2015

Instructions:
Language of the Computer

COMP2611: Computer Organization

COMP2611 Fall 2015 Instruction: Language of the Computer

2 Major Goal

To command a computer’s hardware,

you must speak its language

 To learn a subset of the MIPS assembly language

 The “words” of a machine language are called instructions

 Its “vocabulary” is called an instruction set.

 In the form written by the programmer  assembly language

 In the form the computer can understand  machine language

 To learn the design principles for instruction set architecture (ISA)

COMP2611 Fall 2015 Instruction: Language of the Computer

3 What is MIPS?

MIPS (Microprocessor without Interlocked Pipeline Stages)

 A widely used microprocessor architecture

 e.g. Silicon Graphic (SGI), ATI Technologies, Broadcom, Cisco, NEC,

 Nintendo, Sony PlayStation, Texas Instruments (TI), Toshiba,

 embedded systems, Windows CE devices

What is ISA?

 An instruction set architecture (ISA) is the part of the processor
that is visible to the programmer or compiler writer, including

 the native data types,

 instructions,

 registers,

 addressing modes,

 memory architecture,

 interrupt and exception handling,

 and external I/O.

 An ISA includes a specification of the set of opcodes (machine
language), and the native commands implemented by a particular
processor.

COMP2611 Fall 2015 Instruction: Language of the Computer

4

ISA vs. Assembly Language

 "ISA" standardizes a public interface to a
processor that should be used as the basis
to write programs

 Assembly Language is a term for a
programming language.

 Ideally for each ISA there is an Assembly
Language,

 But it is not all that uncommon that more
than one or subtle variations can exist
between Assembly Languages for a specific
ISA.

 The Assembly Language is essentially
defined by the Assembler

COMP2611 Spring 2015 Instruction: Language of the Computer

5

C c o m p i l e r

A s s e m b l e r

s w a p (i n t v [] , i n t k)

{ i n t t e m p ;

 t e m p = v [k] ;

 v [k] = v [k + 1] ;

 v [k + 1] = t e m p ;

}

s w a p :

 m u l i $ 2 , $ 5 , 4

 a d d $ 2 , $ 4 , $ 2

 l w $ 1 5 , 0 ($ 2)

 l w $ 1 6 , 4 ($ 2)

 s w $ 1 6 , 0 ($ 2)

 s w $ 1 5 , 4 ($ 2)

 j r $ 3 1

0 0
1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COMP2611 Fall 2015 Instruction: Language of the Computer

6 Why ISA?

Imagine that Intel processors do not have an ISA

 It means the vocabulary of hardware can change from time to time

 No guarantee of how the instructions will look like in the next product

 From programmers’ point of view

 Potentially need to re-program every time we upgrade our computer. It
would be a nightmare!

 From system designers’ point of view:

 Hardware improvement (for performance, or power efficiency, etc) may
lead to incompatibility with existing applications

With ISA abstraction, all these problem are resolved

 All software developers have to do is conforming to machine’s ISA

 No need to worry about how hardware implements the instructions

 All system designers have to do is making sure new processor implementation
backward compatible to ISA’s definition, instead of existing applications

Therefore, it is critical to have a good ISA design!

COMP2611 Fall 2015 Instruction: Language of the Computer

7 Design Principles for ISA

 Simplicity favors regularity

 Smaller is faster

 Make common case fast

 Good design demands good compromises

COMP2611 Fall 2015 Instruction: Language of the Computer

8

1. Basic MIPS Instructions

COMP2611 Fall 2015 Instruction: Language of the Computer

9 Operations of Computer Hardware

 Every computer must be able to perform arithmetic operations.

 Example of a MIPS arithmetic instruction

add a, b, c

 It is equivalent to a = b + c in C++

sub x, y, z

 It is equivalent to x = y - z in C++

COMP2611 Fall 2015 Instruction: Language of the Computer

10

 Another example (adding four variables: a = b + c + d + e)

add a, b, c # sum of b & c is placed in a

add a, a, d # sum of b, c & d is now in a

add a, a, e # sum of b, c, d & e is now in a

 Three instructions are needed! Why?

• Because each add instruction can only have three variables

(called operands) in MIPS architecture

Why a fixed number of operands?

Operations of Computer Hardware (cont’d)

COMP2611 Fall 2015 Instruction: Language of the Computer

11

Design Principle #1

Simplicity favors regularity

 Each instruction has a fixed number of operands in MIPS

 Intel architecture supports a variable number of operands

 Why fixed number instead of variable number of operands?

 The hardware is less complicated for a fixed number of operands

MIPS Instruction Format

COMP2611 Fall 2015 Instruction: Language of the Computer

12

Notes:

 Each line of code contain at most one instruction

 Words to the right of # symbol are comments for the human reader

 Comments are entirely ignored by the computer

More Examples

 Consider a high-level language statement with 5 vars (f, g, h, i, j)

f = (g + h) – (i + j);

 Translated to MIPS instructions (to be modified to a more realistic solution later):

add t0, g, h # temp variable t0 contains g+h

add t1, i, j # temp variable t1 contains i+j

sub f, t0, t1 # f gets t0 – t1, or (g+h) –

 # (i+j)

COMP2611 Fall 2015 Instruction: Language of the Computer

13 Register Operand

Unlike programs in high-level languages, the operands of arithmetic
instructions cannot be any variables. They must be from a limited

number of special locations called registers.

 Fast temporary storage inside the processor used to hold variables.

 Size of a register in the MIPS architecture is 32 bits.

 Each group of 32 bits is called a word in the MIPS architecture.

 MIPS architecture has 32 registers

Variable vs. Register

 Variable is a logical storage, # of variables can be unlimited

 Register is a physical storage, # of registers is limited

What happens if not enough registers to hold all the variables?

COMP2611 Fall 2015 Instruction: Language of the Computer

14 Different Types of Registers in MIPS

MIPS has 32 general purpose registers, each is of 32 bits in length

 Registers that correspond to variables in a high-level program are
denoted as $s0, $s1, … , $s7

 Temporary registers needed to compile the program into MIPS
instructions are denoted as $t0, $t1, … , $t7

 $zero, a special register holding a constant value 0, read-only (i.e.

not modifiable)

 Others will be introduced much later

COMP2611 Fall 2015 Instruction: Language of the Computer

15 Completing the Previous Example

 Translate the following statement to MIPS assembly language

f = (g + h) – (i + j);

 Using registers $s0, $s1, $s2, $s3, $s4, to hold variables f, g, h, i, j

 Answer:

add $t0, $s1, $s2 # reg $t0 contains g+h

add $t1, $s3, $s4 # reg $t1 contains i+j

sub $s0, $t0, $t1 # f gets $t0 – $t1

COMP2611 Fall 2015 Instruction: Language of the Computer

16 How Many Registers Do We Need?

If the number of registers is

 Too few:

 not enough to hold large number of variables in a program

 Too many:

 more complicated processor design

 increased clock cycle time  obstacle to improving performance

 The computer architect should strike a good balance between
providing a large number of registers and keeping the clock cycle short

COMP2611 Fall 2015 Instruction: Language of the Computer

17 How Many Registers Do We Need? (cont’d)

Design Principle #2

Smaller is faster

 Having a small enough number of registers leads to a faster processor

 Why?

 Larger number of registers, longer electronic signals must travel

COMP2611 Fall 2015 Instruction: Language of the Computer

18 Data Transfer in MIPS

What if a program manipulates a large number of elements?

 Not possible to store elements all at once in registers inside processor

 Ex: Large composite data like arrays, structures and dynamic data are
kept in the memory

 memory provides large storage for millions of data elements.

MIPS’ design disallows values stored in memory to be manipulated
directly

Then, how does MIPS use such data?

 Data must be transferred from memory to a register before
manipulation and the results are stored back to memory

 We need Data transfer instructions

 load moves data from memory to a register, e.g. lw (load a word)

 store moves data from a register to memory, e.g. sw (store a word)

COMP2611 Fall 2015 Instruction: Language of the Computer

19 Example with Data Transfer

 Translate the following statement to MIPS assembly language

f = g + h;

 Answer:

lw $s1, g # load variable into register

lw $s2, h # load variable into register

add $t0, $s1, $s2 # reg $t0 contains g+h

sw $t0, f # store (g+h) to f

Next, we need to express g, h, and f in terms of memory location!

COMP2611 Fall 2015 Instruction: Language of the Computer

20 Addressing Memory Location

 Memory is a consecutive arrangement of storage locations.

 Each memory location is indexed by an address.

 Most architectures address individual bytes

 Addresses of sequential 8-bit bytes differ by 1 -> byte address

 Addresses of sequential 32-bit words differ by 4 -> word
address

 To specify the address of the memory location of any array
element in assembly language, we need two parts:

 Base address: starting address of an array

 Offset: distance of target location from starting address

• it is a constant that can be either positive or negative

Example

 A memory with 16-bit address

 Max memory capacity is 216 bytes

COMP2611 Fall 2015 Instruction: Language of the Computer

21

COMP2611 Fall 2015 Instruction: Language of the Computer

22 Memory Operand

A is an array of 100 words

 How can we perform A[12] = h + A[8]; in MIPS?

Assume $s0 store the starting location of array A (i.e., address of A[0])

Assume $s1 store the value of h

 Answer:

temp reg $t0 gets A[8]

lw $t0, 32($s0)

$t0 = h + A[8]

add $t0, $s1, $t0

stores h + A[8] to A[12]

sw $t0, 48($s0)

 Remark: $s0 is used as a base register, “32” and “48” are offsets

?

address of A[8] : $s0 + 32

COMP2611 Fall 2015 Instruction: Language of the Computer

23 Endianness (byte order): Little or Big?

0x00
0x01

0x20

0x21

0x22

0x23

0x24

0x25

0x26

byte address

word address

0x20

0x24

…

0x27

0x28 0x28

1
 w

o
rd

…

…

Memory

0A 0B 0C 0D

32-bit word

• In which order is the
word stored in
Memory?

Endianness: Little or Big?

Big-Endian
end of the word matches big
addresses

Little-Endian
end of the word matches little
addresses

COMP2611 Fall 2015 Instruction: Language of the Computer

24

0x20

0x21

0x22

0x23

0x24

byte address

…

1
 w

o
rd

…

…

0x20

0x21

0x22

0x23

0x24

byte address

…

1
 w

o
rd

…

…

0A

0B

0C

0D

0D

0C

0B

0A

COMP2611 Fall 2015 Instruction: Language of the Computer

25 Dealing with Constant

 To do the expression register1 = register2 +/- constant:
 addi $t0, $s1, 8 # $t0 = $s1 + 8

 subi $t0, $t0, 1 # $t0 = $t0 – 1

 addi $t0, $t0, -1 # $t0 = $t0 – 1

 addi means add immediate (constant)

 Constant part is always the last operand of this instruction

 Various ways to initialize a register with zero (or some constants):

i) sub $t0, $t0, $t0 # $t0 = 0 for sure

ii) add $t0, $zero, $zero # same effect

iii) addi $t0, $0, 5 # $t0 = 0 + 5 = 5

COMP2611 Fall 2015 Instruction: Language of the Computer

26 Memory vs. Register vs. Constant

 Major difference is the instruction’s execution time

① Memory is outside the processor; far from the processing unit

• Memory operand takes a long time to load/store

② Register is inside the processor; close to the processing unit

• Register operand takes a short time to get to the value

③ Constant already encoded in the instruction

• Constant operand value is immediately available

A program is a mixture of these three types of operations

If you are to optimize the program running time, what should you do?

COMP2611 Fall 2015 Instruction: Language of the Computer

27 Focus on the Common Case

Design Principle #3

Make the common case fast

 Constant operands occur frequently!

 By including constants inside arithmetic instructions,

 They are much faster than if constants were loaded from memory

COMP2611 Fall 2015 Instruction: Language of the Computer

28 Logical Operations – and, or, nor

 and, or, nor: bit-by-bit operation

 Example
 given register $t1 and $t2 , $t1 = 0011 1100 0000 00002

 $t2 = 0000 1101 0000 00002

 and $t0, $t1, $t2 $t0 = 0000 1100 0000 00002
 or $t0, $t1, $t2 $t0 = 0011 1101 0000 00002
 nor $t0, $t1, $zero $t0 = 1100 0011 1111 11112

 andi: and with an immediate operand
 ori: or with an immediate operand

bit 1 bit 2 and or nor

0 0 0 0 1

0 1 0 1 0

1 0 0 1 0

1 1 1 1 0

COMP2611 Fall 2015 Instruction: Language of the Computer

29 Logical Operations – shift

shift

 Move all the bits in a word to the left or right

 Filling the emptied bits with 0s

 Example

 0000 0000 0000 0000 0000 0000 0000 1001 = 910

 shift left (<<) by 4

 0000 0000 0000 0000 0000 0000 1001 0000 = 14410

 shifting left by k bits gives the same result as multiplying by 2k

MIPS shift instructions:

sll (‘shift left logical’), srl (‘shift right logical’)

 Example

sll $t2, $s0, 4 # reg $s0 << 4 bits

COMP2611 Fall 2015 Instruction: Language of the Computer

30 What Have We Learned So Far about MIPS ISA?

Three types of instructions: arithmetic, logical, data transfer

Category Instruction Example Meaning Comments

Arithmetic

add add $s1, $s2, $s3 $s1 = $s2 + $s3 3 operands

subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 3 operands

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 2 operands, 1 constant

Logical

and and $s1, $s2, $s3 $s1 = $s2 & $s3 3 operands, bit-by-bit and

or or $s1, $s2, $s3 $s1 = $s2 | $s3 3 operands, bit-by-bit or

nor nor $s1, $s2, $s3 $s1 = ~($s2 | $s3) 3 operands, bit-by-bit or

and immediate andi $s1, $s2, 100 $s1 = $s2 & 100 2 operands, 1 constant,
bit-by-bit

or immediate ori $s1, $s2, 100 $s1 = $s2 | 100 2 operands, 1 constant,
bit-by-bit

shift left logical sll $s1, $s2, 10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl $s1, $s2, 10 $s1 = $s2 >> 10 Shift right by constant

Data
transfer

load word lw $s1, 100($s2) $s1 = memory[$2+100] Word from mem to reg

store word sw $s1, 100($s2) Memory[$2+100] = $1 Word from reg to mem

COMP2611 Fall 2015 Instruction: Language of the Computer

31 Writing a Program in MIPS

 How can I declare an array / a variable in a MIPS program?

 How can I obtain the starting address of an array?

 How does the program run?

COMP2611 Fall 2015 Instruction: Language of the Computer

32 Sample Program

#############
- We need to declare "variables" & "Arrays" used in the program in a
data segment.
- The compiler recognize .data as the beginning of data segment
.data
h: .word 1 2 3 4 # h is an array of size 4, each element is a word (32 bit)
s: .word 5

The 3 lines below let the system know the program begins here
.text
.globl __start
__start:

Write your program code here
la $s0, h # Obtain starting address of array h, s0 = x (a constant)
lw $s1,8($s0) # $s1 = content in memory address x + 8 = 3 = h[2]

la $s2, s
lw $s3, -12($s2) # $s2 = content of address of s -12 = ?
sub $s3, $s3, $s1 # Q1: Guess what is the value of $s3 ?
sw $s3, 0($s0) # Q2: How are the values of array h changed ?

COMP2611 Fall 2015 Instruction: Language of the Computer

33 How Does It Work?

 When the program is about to run, the data (variables, arrays)
declared will be fed into memory consecutively

 h & s are called “labels”, they can be viewed as the bookmarks of the
program

 When la $s0, h is executed, the address (in byte) referenced by h will
be assigned to register $s0

 e.g. if X = 10000, then $s0 = 10000. This means the values of the
array h store between the 10000th and 10015th byte of the memory

h: .word 1 2 3 4 # h is an array of size 4

s: .word 5

Address Value Array element

X -th byte 1 h[0]

X+4 -th byte 2 h[1]

X+8 -th byte 3 h[2]

X+12 -th byte 4 h[3]

X+16 -th byte 5

h

s

COMP2611 Fall 2015 Instruction: Language of the Computer

34

2. Implement MIPS Instructions

COMP2611 Fall 2015 Instruction: Language of the Computer

35

 Example: add $t0, $s1, $s2

 Decimal representation:

 Binary representation:

How does the computer “see” the instructions?

 Machine language or machine code; represented as binary numbers

 Numeric data are kept in computer as a series of high & low
electronic signals – base 2 or binary numbers

 A binary digit, or bit, is the basic unit of digital computing

What is the format of the machine code?

 All MIPS instructions are 32-bit long, broken up into a number of fields

Representing Instructions in the Computer

32 0 8 18 17 0

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

100000 00000 01000 10010 10001 000000

COMP2611 Fall 2015 Instruction: Language of the Computer

36 Instruction Formats

 All MIPS instructions have fixed length, but different instructions may
have different formats

 Three types of instruction formats in MIPS

 R-type or R-format for register

 I-type or I-format for immediate

 J-type or J-format for jump

 Each format is assigned a distinct set of values for the 1st field

 Hardware can interpret the instruction just by examining this field

 This field is so-called opcode

 Using multiple formats complicates hardware design, but complexity
can be reduced by keeping the formats similar (will see in next slides)

COMP2611 Fall 2015 Instruction: Language of the Computer

37 R-type Instruction Format

R-type or R-format

 Instruction fields: (6 fields)

 op: basic operation of instruction, traditionally called opcode

 rs: first register source operand

 rt: second register source operand

 rd: register destination operand, which gets result of operation

 shamt: shift amount (number of positions to shift)

 funct: function code selecting the specific variant of the opcode

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

COMP2611 Fall 2015 Instruction: Language of the Computer

38 I-type Instruction Format

I-type or I-format

 Instruction fields:

 op: as before

 rs: base register

 rt: register source operand (for sw)

 or destination operand (for lw)

 address: 16-bit address offset from the starting address

• needed for data transfer instructions

• 5-bit field in the R-format is too small for specifying the offset
for reasonably sized arrays.

op rs rt const or address

6 bits 5 bits 5 bits 16 bits

COMP2611 Fall 2015 Instruction: Language of the Computer

39 Fixed vs. Variable Instruction Length

Design Principle #4

Good design demands good compromises

 Ways to encode instructions:

 Variable length or fixed length

 How to choose?

 Use variable length to optimize code size (i.e. to save storage)

 Use fixed length to optimize performance and reduce complexity

 Compromise MIPS chose is to keep all instructions the same length

 Why?

 Hardware to fetch & decode an instruction is simpler and faster

COMP2611 Fall 2015 Instruction: Language of the Computer

40 MIPS Instruction Encoding

 reg: a register number between 0 and 31

 const/address: a constant or a 16-bit address (offset)

 e.g. both add and sub have the same value in op field but different
values (32 for add; 34 for sub) in the funct field.

Instruction Type op rs rt rd shamt funct const/address

add R 0 reg reg reg 0 3210 -

sub R 0 reg reg reg 0 3410 -

and R 0 reg reg reg 0 3610 -

or R 0 reg reg reg 0 3710 -

sll R 0 0 reg reg constant 0 -

srl R 0 0 reg reg constant 210 -

addi I 810 reg reg - - constant

lw I 3510 reg reg - - address

sw I 4310 reg reg - - address

COMP2611 Fall 2015 Instruction: Language of the Computer

41 Naming the Registers in MIPS

Symbolic name Register number Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results and expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

Notes:

 register 1, called $at, is reserved for the assembler

 register 26-27, called $k0-$k1, are reserved for the operating system

 Not by alphabet, but by number!

COMP2611 Fall 2015 Instruction: Language of the Computer

42 Example - Problem

 Description:

 Suppose $t1 stores the base address of array A and $s2 is
associated with h, the following C assignment statement

A[300] = h + A[300];

 is compiled into

lw $t0, 1200($t1) # $t0 gets A[300]

add $t0, $s2, $t0 # $t0 gets h + A[300]

sw $t0, 1200($t1) # A[300] gets h + A[300]

 Problem to solve:

 What is the MIPS machine code for these three instructions?

COMP2611 Fall 2015 Instruction: Language of the Computer

43 Example - Answer

lw $t0, 1200($t1)

add $t0, $s2, $t0

sw $t0, 1200($t1)

 Decimal representation:

 Binary representation:

op rs rt rd
address
/shamt

funct

35 9 8 1200

0 18 8 8 0 32

43 9 8 1200

100011 01001 01000 0000 0100 1011 0000

000000 10010 01000 01000 00000 100000

101011 01001 01000 0000 0100 1011 0000

COMP2611 Fall 2015 Instruction: Language of the Computer

44 Other Important MIPS Instructions

Unsigned arithmetic

 addu $d, $s, $t

 subu $d, $s, $t

Load/store a byte

 lb $t, offset($s)

 sb $t, offset($s)

Logical operation

 xor $d, $s, $t # $d = $s ^ $t

 xori $t, $s, imm # $t = $s ^ imm

Shift left/right logical variable

 sllv $d, $t, $s # $d = $t << $s

 srlv $d, $t, $s # $d = $t >> $s

COMP2611 Fall 2015 Instruction: Language of the Computer

45 The Stored-Program Concept

 Today’s computers are built on two key principles

 Instructions are represented as numbers.

 Programs can be stored in memory to be read or written,

 just like numeric data.

Processor

Memory

accounting program
(machine code)

editor program
(machine code)

C compiler
(machine code)

payroll data

book text

editor program
(source code)

