COMP2611: Computer Organization

Instructions:
Language of the Computer

COMP2611 Fall 2015

Major Goal 2

To command a computer’s hardware,
you must speak its language

Q To learn a subset of the MIPS assembly language
Q The “words” of a machine language are called instructions
O Its “vocabulary” is called an instruction set.
Q In the form written by the programmer — assembly language
O In the form the computer can understand — machine language

Q To learn the design principles for instruction set architecture (ISA)

COMP2611 Fall 2015 Instruction: Language of the Computer

What is MIPS? 3

MIPS (Microprocessor without Interlocked Pipeline Stages)

Q A widely used microprocessor architecture

Q e.g. Silicon Graphic (SGI), ATI Technologies, Broadcom, Cisco, NEC,
Nintendo, Sony PlayStation, Texas Instruments (TI), Toshiba,
embedded systems, Windows CE devices

COMP2611 Fall 2015 Instruction: Language of the Computer

What is ISA? 4

Q An instruction set architecture (ISA) is the part of the processor
that is visible to the programmer or compiler writer, including

O the native data types,

Q instructions,

Q registers,

Q addressing modes,

O memory architecture,

O interrupt and exception handling,
O and external 1/0.

Q An ISA includes a specification of the set of opcodes (machine
language), and the native commands implemented by a particular
processor.

COMP2611 Fall 2015 Instruction: Language of the Computer

ISA vs. Assembly Language 5

Q "ISA" standardizes a public interface to a
processor that should be used as the basis
to write programs

Q Assembly Language is a term for a
programming language.

Q Ideally for each ISA there is an Assembly
Language,

Q But it is not all that uncommon that more
than one or subtle variations can exist
between Assembly Languages for a specific
ISA.

Q The Assembly Language is essentially
defined by the Assembler

COMP2611 Spring 2015

swap((int v[], int k)
{inttem p;
temp = v[k];
v[k] = v[k+1]

vik+1] = temp;
}
swap:

muli $2, $5,4
add $2, $4,%2
lw $15, 0($2)
lw $16, 4($2)
sw $16,0($2)
sw $15, 4($2)
jr $31

00000000101000010000000000011000
00000000100011100001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Instruction: Language of the Computer

Why ISA? 6

Imagine that Intel processors do not have an ISA
Q It means the vocabulary of hardware can change from time to time
QO No guarantee of how the instructions will look like in the next product

Q From programmers’ point of view

O Potentially need to re-program every time we upgrade our computer. It
would be a nightmare!

a From system designers’ point of view:

O Hardware improvement (for performance, or power efficiency, etc) may
lead to incompatibility with existing applications

With ISA abstraction, all these problem are resolved

Q All software developers have to do is conforming to machine’s ISA
O No need to worry about how hardware implements the instructions

Q All system designers have to do is making sure new processor implementation
backward compatible to ISA’s definition, instead of existing applications

Therefore, it is critical to have a good ISA design!

COMP2611 Fall 2015 Instruction: Language of the Computer

Design Principles for ISA

Q Simplicity favors regularity
O Smaller is faster
O Make commmon case fast

a Good design demands good compromises

COMP2611 Fall 2015 Instruction: Language of the Computer

1. Basic MIPS Instructions

COMP2611 Fall 2015 Instruction: Language of the Computer

Operations of Computer Hardware

Q Every computer must be able to perform arithmetic operations.

a Example of a MIPS arithmetic instruction
add a, b, c

O Itis equivalenttoa =b + cin C++

sub x, y, z

O Itisequivalenttox =y -zin C++

COMP2611 Fall 2015 Instruction: Language of the Computer

Operations of Computer Hardware (cont’'d)

Q Another example (adding four variables:a=b+c+d+e)

add a, b, c # sum of b & ¢ is placed in a
add a, a, d # sum of b, ¢ & d is now in a

add a, a, e # sum of b, ¢, d & e is now in a

QO Three instructions are needed! Why?

» Because each add instruction can only have three variables
(called operands) in MIPS architecture

Why a fixed number of operands? '

COMP2611 Fall 2015 Instruction: Language of the Computer

MIPS Instruction Format

Design Principle #1

Simplicity favors regularity

Q Each instruction has a fixed number of operands in MIPS
Q Intel architecture supports a variable number of operands

a Why fixed number instead of variable number of operands?
* The hardware is less complicated for a fixed number of operands

COMP2611 Fall 2015 Instruction: Language of the Computer

More Examples

Q Consider a high-level language statement with 5 vars (£, g, h, i, j)
f=(g+h) - (1+3);

Q Translated to MIPS instructions (to be modified to a more realistic solution later):

add t0, g, h # temp variable t0 contains g+h
add t1, i, j # temp variable tl contains i+j
sub £, t0, t1 # £ gets t0 - tl1, or (g+h) -

(i+3)

Notes:

» Each line of code contain at most one instruction

» Words to the right of # symbol are comments for the human reader
» Comments are entirely ignored by the computer

COMP2611 Fall 2015 Instruction: Language of the Computer

Register Operand

/Unlike programs in high-level languages, the operands of arithmetic

instructions cannot be any variables. They must be from a limited
number of special locations called registers.

Q Fast temporary storage inside the processor used to hold variables.
Q Size of a register in the MIPS architecture is 32 bits.

Q Each group of 32 bits is called a word in the MIPS architecture.
Q MIPS architecture has 32 registers

Variable vs. Register
Q Variable is a logical storage, # of variables can be unlimited
O Register is a physical storage, # of registers is limited

What happens if not enough registers to hold all the variables? |

COMP2611 Fall 2015 Instruction: Language of the Computer

Different Types of Registers in MIPS

MIPS has 32 general purpose registers, each is of 32 bits in length

QO Registers that correspond to variables in a high-level program are
denoted as $s0, $s1, ..., $s7

O Temporary registers needed to compile the program into MIPS
instructions are denoted as $t0, $t1, ..., $t7

O $zero, a special register holding a constant value 0, read-only (i.e.
not modifiable)

O Others will be introduced much later

COMP2611 Fall 2015 Instruction: Language of the Computer

Completing the Previous Example

Q Translate the following statement to MIPS assembly language

f=(g+h - (1+73);
Q Using registers $s0, $s1, $s2, $s3, $s4, to hold variables f, g, h, i, j

O Answer:

add $t0, $sl, $s2 # reg $t0 contains g+h
add $tl, $s3, $s4 # reg $tl contains i+j
sub $s0, $t0, $tl # £ gets $t0 - $tl

COMP2611 Fall 2015 Instruction: Language of the Computer

How Many Registers Do We Need?

If the number of registers is
Q Too few:
Q not enough to hold large number of variables in a program
0 Too many:
O more complicated processor design
Q increased clock cycle time = obstacle to improving performance

Q The computer architect should strike a good balance between
providing a large number of registers and keeping the clock cycle short

COMP2611 Fall 2015 Instruction: Language of the Computer

How Many Registers Do We Need? (cont'd)

Design Principle #2

Smaller is faster

Q Having a small enough number of registers leads to a faster processor
Q Why?
% Larger number of registers, longer electronic signals must travel

COMP2611 Fall 2015 Instruction: Language of the Computer

Data Transfer in MIPS

What if a program manipulates a large number of elements?
Q Not possible to store elements all at once in registers inside processor

Q Ex: Large composite data like arrays, structures and dynamic data are
kept in the memory

QO memory provides large storage for millions of data elements.

MIPS’ design disallows values stored in memory to be manipulated
directly

Then, how does MIPS use such data?

a Data must be transferred from memory to a register before
manipulation and the results are stored back to memory

Q We need Data transfer instructions
QO load moves data from memory to a register, e.g. lw (load a word)
Q store moves data from a register to memory, e.g. sw (store a word)

COMP2611 Fall 2015 Instruction: Language of the Computer

Example with Data Transfer

Q Translate the following statement to MIPS assembly language

f =g+ h;
O Answer:
lw $sl, g # load variable into register
lw $s2, h # load variable into register
add $t0, $sl, $s2 # reg $t0 contains g+h
sw S$t0, £ # store (g+h) to £

Next, we need to express g, h, and f in terms of memory location!

COMP2611 Fall 2015 Instruction: Language of the Computer

Addressing Memory Location

Q Memory is a consecutive arrangement of storage locations.
O Each memory location is indexed by an address.
O Most architectures address individual bytes
O Addresses of sequential 8-bit bytes differ by 1 -> byte address

O Addresses of sequential 32-bit words differ by 4 -> word
address

Q To specify the address of the memory location of any array
element in assembly language, we need two parts:

O Base address: starting address of an array
O Offset: distance of target location from starting address
e it is a constant that can be either positive or negative

COMP2611 Fall 2015

Instruction: Language of the Computer

Example

O A memory with 16-bit address
ad Max memory capacity is 216 bytes

0000 9909 9000 0904 0000 I
0099 0009 0000 0091 0001 I
0000 0000 0000 0910 0002 |
0000 9909 9000 0911 0003 '
I
I

0000 9900 0009 0109 0004
0000 9000 0009 0101 0005

0000 9009 9100 1901 0049 I T N N I -
0000 9909 7100 1914 004A I T N Y
0000 9000 0100 1011 004H L1 1 1 1 1 1

1111 1111 1111 1111 FFFF L1 1 1 1 1 1

Binary Hex Memory
Address Byties

COMP2611 Fall 2015 Instruction: Language of the Computer

Memory Operand

A is an array of 100 words
Q How can we perform A[12] = h + A[8]; in MIPS?

Assume $s0 store the starting location of array 2 (i.e., address of A[0])
Assume $s1 store the value of h

O Answer:
temp reg $t0 gets A
lw $t0,€i&g¥ﬂ§__///// # address of A[8] : $s0 + 32
$t0 = h + A[8] ?

add $t0, sl, StO
stores h + A[8] to A[l1l2]
sw S$t0, 48($s0)

O Remark: $s0 is used as a base register, "32” and "48” are offsets

COMP2611 Fall 2015 Instruction: Language of the Computer

Endianness (byte order): Little or Big?

word address

byte address
ox00 |- 32-bit word
"""""""" OA 0B 0C 0D

0x20 1 i
0x20 X e In which order is the

0x21 .
0x22 word stored in

0x23 Memory?
0x24 Ox24
0x25
0x26

0x27
0x28 0x28

Y
1 word

Memory

COMP2611 Fall 2015 Instruction: Language of the Computer

Endianness: Little or Big?

ABig-Endian
end of the word matches big
addresses

byte address

0x20 OA

0x21 OB

0x22 0C

0x23 OD

0x24

ALittle-Endian

end of the word matches little

addresses
byte address
0x20 0 D)
0x21 0C
0x22 0B i
0x23 O A
0x24 -

COMP2611 Fall 2015

Instruction: Language of the Computer

Dealing with Constant

Q To do the expression registerl = register2 +/- constant:
addi $t0, $sl, 8 ¥ $t0 = $sl1 + 8

addi $t0, $t0, -1 # $t0 = $t0 - 1

0 addi means add immediate (constant)
Q Constant part is always the last operand of this instruction

QO Various ways to initialize a register with zero (or some constants):

i) sub $t0, $t0, $tO # St0 = 0 for sure
ii) add $t0, $zero, $zero # same effect

Vo s
iii) addi $t0, $0, 5 # $t0 = 0 + 5 =5

COMP2611 Fall 2015 Instruction: Language of the Computer

Memory vs. Register vs. Constant

Q Major difference is the instruction’s execution time
(O Memory is outside the processor; far from the processing unit
e Memory operand takes a long time to load/store
@ Register is inside the processor; close to the processing unit
e Register operand takes a short time to get to the value
® Constant already encoded in the instruction
o Constant operand value is immediately available

A program is a mixture of these three types of operations

If you are to optimize the program running time, what should you do? l

COMP2611 Fall 2015 Instruction: Language of the Computer

Focus on the Common Case

Design Principle #3

Make the common case fast

Q Constant operands occur frequently!
O By including constants inside arithmetic instructions,
Q They are much faster than if constants were loaded from memory

COMP2611 Fall 2015 Instruction: Language of the Computer

Logical Operations — and, or, nor

Q and, or, nor: bit-by-bit operation

bit 1 |bit 2| and or nor
0 0 0 0 1
0 1 0 1 0
1 0 0 1 0
1 1 1 1 0
Q Example
Q given register $t1 and $t2, $t1 = 0011 1100 0000 0000,
$t2 = 0000 1101 0000 0000,
O and $t0, $tl, $t2 $t0 = 0000 1100 0000 0000,
Oor $t0, tl, St2 $t0 = 0011 1101 0000 0000,
O nor $t0, $tl, $zero $t0 = 1100 0011 1111 1111,

Q andi: and with an immediate operand
d ori: or with an immediate operand

COMP2611 Fall 2015 Instruction: Language of the Computer

Logical Operations — shift

shift
Q Move all the bits in a word to the left or right
Q Filling the emptied bits with 0s

Q Example
0000 0000 0000 0000 0000 0000 0000 1001

shift left (<<) by 4 / /

0000 0000 0000 0000 0000 0OOOO 1001 0000 = 144,
shifting left by k bits gives the same result as multiplying by 2k

910

MIPS shift instructions:
s11 (‘shift left logical”), srl (‘shift right logical’)
Q Example
sll $t2, $s0, 4 # reg $s0 << 4 bits

COMP2611 Fall 2015 Instruction: Language of the Computer

What Have We Learned So Far about MIPS ISA?

Three types of instructions: arithmetic, logical, data transfer

Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 | $s1 = $s2 + $s3 3 operands
Arithmetic subtract sub $s1, $s2, $s3 | $s1 = $s2 - $s3 3 operands
add immediate addi $s1, $s2, 100 | $s1 = $s2 + 100 2 operands, 1 constant
and and $s1, $s2, $s3 | $s1 = $s2 & $s3 3 operands, bit-by-bit and
or or $s1,$s2, $s3 | $s1 = $s2 | $s3 3 operands, bit-by-bit or
Logical nor nor $s1, $s2, $s3 | $s1 = ~($s2 | $s3) 3 operands, bit-by-bit or
and immediate andi $s1, $s2, 100 | $s1 = $s2 & 100 2 operands, 1 constant,
bit-by-bit
or immediate ori $s1, $s2, 100 | $s1 = $s2 | 100 2 operands, 1 constant,
bit-by-bit
shift left logical | sll $s1, $s2, 10 $s1 = $s2 << 10 Shift left by constant
shift right logical | srl $s1, $s2, 10 | $s1 = $s2 >> 10 Shift right by constant
Data load word lw $s1, 100($s2) | $s1 = memory[$2+100] | Word from mem to reg
transfer store word sw $s1, 100($s2) | Memory[$2+100] = $1 | Word from reg to mem

COMP2611 Fall 2015 Instruction: Language of the Computer

Writing a Program in MIPS

O How can I declare an array / a variable in a MIPS program?
Q How can I obtain the starting address of an array?

O How does the program run?

COMP2611 Fall 2015 Instruction: Language of the Computer

Sample Program

HHAHBHBHHAHHHRH

- We need to declare "variables" & "Arrays" used in the program in a

data segment.

- The compiler recognize .data as the beginning of data segment

.data

h: .word 1 2 34 # his an array of size 4, each element is a word (32 bit)
s: .word 5

The 3 lines below let the system know the program begins here
text

.globl __start

__start:

Write your program code here
la $s0, h # Obtain starting address of array h, sO = x (a constant)
lw $s1,8($s0) # $s1 = content in memory address x + 8 = 3 = h[2]

la $s2, s

lw $s3, -12($s2) # $s2 = content of address of s -12 = ?

sub $s3, $s3, $s1 # Q1: Guess what is the value of $s3 ?

sw $s3, 0($s0) # Q2: How are the values of array h changed ?

COMP2611 Fall 2015 Instruction: Language of the Computer

How Does It Work?

Q When the program is about to run, the data (variables, arrays)
declared will be fed into memory consecutively

h: .word 1 2 3 4 # h is an array of size 4

s: .word 5
Address Value Array element
h——| X -th byte 1 h[0]
X+4 -th byte 2 h[1]
X+8 -th byte 3 h[2]
X+12 -th byte 4 h[3]
S——>| X+16 -th byte 5

Q h & s are called “labels”, they can be viewed as the bookmarks of the
program

O When la $s0, h is executed, the address (in byte) referenced by h will
be assigned to register $s0

Q e.g.if X = 10000, then $s0 = 10000. This means the values of the
array h store between the 10000t and 10015t byte of the memory

COMP2611 Fall 2015 Instruction: Language of the Computer

2. Implement MIPS Instructions

COMP2611 Fall 2015 Instruction: Language of the Computer

Representing Instructions in the Computer

How does the computer “see” the instructions?
O Machine language or machine code; represented as binary numbers
O Numeric data are kept in computer as a series of high & low

electronic signals — base 2 or binary numbers

Q A binary digit, or bit, is the basic unit of digital computing

What is the format of the machine code?

Q All MIPS instructions are 32-bit long, broken up into a number of fields

Q Example:

O Decimal representation:

QO Binary representation:

add sto|| $s1] | $s2
0 17 18 8 0 32
000000 | 10001 | 10010 | 01000 | 00000 | 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

COMP2611 Fall 2015

Instruction: Language of the Computer

Instruction Formats

Q All MIPS instructions have fixed length, but different instructions may
have different formats

Qa Three types of instruction formats in MIPS
Q R-type or R-format for register
Q I-type or I-format for immediate
Q J-type or J-format for jump

Q Each format is assigned a distinct set of values for the 15t field
O Hardware can interpret the instruction just by examining this field
Q This field is so-called opcode

Q Using multiple formats complicates hardware design, but complexity
can be reduced by keeping the formats similar (will see in next slides)

COMP2611 Fall 2015 Instruction: Language of the Computer

R-type Instruction Format

R-type or R-format

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Q Instruction fields: (6 fields)
Q op: basic operation of instruction, traditionally called opcode
Q rs: first register source operand
Q rt: second register source operand
O rd: register destination operand, which gets result of operation
O shamt: shift amount (number of positions to shift)
O funct: function code selecting the specific variant of the opcode

COMP2611 Fall 2015 Instruction: Language of the Computer

I-type Instruction Format

I-type or I-format

op rs rt const or address
6 bits 5 bits 5 bits 16 bits

a Instruction fields:
Q op: as before

Q rs: base register
Q rt: register source operand (for sw)

or destination operand (for 1w)
O address: 16-bit address offset from the starting address
e needed for data transfer instructions

o 5-bit field in the R-format is too small for specifying the offset
for reasonably sized arrays.

COMP2611 Fall 2015 Instruction: Language of the Computer

Fixed vs. Variable Instruction Length

Design Principle #4

Good desigh demands good compromises

O Ways to encode instructions:
O Variable length or fixed length

Q How to choose?
O Use variable length to optimize code size (i.e. to save storage)
Q Use fixed length to optimize performance and reduce complexity

O Compromise MIPS chose is to keep all instructions the same length
Q Why?
O Hardware to fetch & decode an instruction is simpler and faster

COMP2611 Fall 2015 Instruction: Language of the Computer

MIPS Instruction Encoding

Instruction | Type op rs rt rd | shamt | funct | const/address

add R 0 reg | reg | reg 0 324 -
sub R 0 reg | reg | reg 0 34, -
and R 0 reg | reg | reg 0 3640 -
or R 0 reg | reg | reg 0 3740 s
sll R 0 0 reg | reg | constant 0 -
srl R 0 0 reg | reg | constant 240 -

addi I 810 reg | reg - - constant

lw I 35,5 | reg | reg - - address

SwW I 43, | reg | reg - - address

QO reg: a register number between 0 and 31

0 const/address: a constant or a 16-bit address (offset)

ad e.g. both add and sub have the same value in op field but different
values (32 for add; 34 for sub) in the funct field.

COMP2611 Fall 2015

Instruction: Language of the Computer

Naming the Registers in MIPS

Q Not by alphabet, but by number!

Symbolic name | Register number Usage
$zero 0 the constant value 0
$v0-$vi 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$agp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

O Notess

> register 1, called $at, is reserved for the assembler
> register 26-27, called $k0-$k1, are reserved for the operating system

COMP2611 Fall 2015

Instruction: Language of the Computer

Example - Problem

O Description:

Q Suppose $t1 stores the base address of array A and $s2 is
associated with h, the following C assignment statement

A[300] = h + A[300];

is compiled into

lw $t0, 1200($tl) # $t0 gets A[300]
add $t0, $s2, $tO0 # St0 gets h + A[300]
sw $t0, 1200($tl) # A[300] gets h + A[300]

A Problem to solve:
O What is the MIPS machine code for these three instructions?

COMP2611 Fall 2015 Instruction: Language of the Computer

Example - Answer

lw $t0, 1200(Stl)

add $t0, $s2, $tO0

sw S$t0, 1200(S$tl)
O Decimal representation:

op rs rt rd 7:#::’: funct
35 9 8 1200

0 18 8 8 0 32
43 9 8 1200

O Binary representation:

100011 | 01001 | 01000 0000 0100 1011 0000
000000 | 10010 | 01000 | 01000 | 0OOOOO | 100000
101011 | 01001 | 01000 0000 0100 1011 0000

COMP2611 Fall 2015 Instruction: Language of the Computer

Other Important MIPS Instructions

Unsigned arithmetic
0 addu $d, $s, $t
Q subu $d, $s, $t

Load/store a byte
Q Ib $t, offset($s)
Q sb $t, offset($s)

Logical operation
Q xor $d, $s, $t #9$d = $s N $t
Q xori $t, $s, imm # $t = $s N imm

Shift left/right logical variable
Q sliv $d, $t, $s # $d = $t << $s
Q srlv $d, $t, $s # $d = $t >> $s

COMP2611 Fall 2015 Instruction: Language of the Computer

The Stored-Program Concept

Q Today’s computers are built on two key principles
O Instructions are represented as numbers.
O Programs can be stored in memory to be read or written,
just like numeric data.

Memory

accounting program
(machine code)

editor program
(machine code)

C compiler
Processor (machine code)

payroll data

book text

editor program
(source code)

COMP2611 Fall 2015 Instruction: Language of the Computer

