
Hazards 

1 

COMP2611 Fall 2015 Pipelined Processor 



Dependences in Programs 

 Data dependence 

Example: lw $1, 200($2) 

   add $3, $4, $1 

add can’t do ID (i.e., read register $1) until lw updates $1  

 

 Control dependence 

    Example: bne $1, $2, target 

   add $3, $4, $5 

next IF can’t start until bne completes the comparison 

 

 These dependences may cause the pipeline not be fully filled 

 Execution stops to wait for data or control to be produced 

 next instruction cannot be executed in next cycle 

 

 

COMP2611 Fall 2015 Pipelined Processor 

2 



COMP2611 Fall 2015 

3 Pipeline Hazards 

 Hazards are situations in pipelining when the next instruction cannot 
be executed in the following clock cycle.  

 

 Three types of pipelined hazards 

 Structural hazards: hardware cannot support the combination 
of instructions to execute in the same clock cycle. Different 
instructions compete for the same hardware. 

 Data hazards: an instruction depends on the results of a 
previous instruction still in the pipeline. 

 Control hazards: which instruction to execute next depends on 
the results of a previous instruction still in the pipeline. Branch 
instruction must complete before we know the next instruction. 

 

 Hazards can always be resolved by waiting. But this slows down 
the pipeline. 

Pipelined Processor 



COMP2611 Fall 2015 

4 Structural Hazards (1): Memory 

 If instructions #1 and #2 are load operations, instruction fetch (#4, #5) 
and data load (#1, #2) conflict for memory access 

 

 

 

 

 

 

 

 

 

 Solution:  

 Add memory ports to allow parallel accesses to independent 
addresses 

 Separate Instruction memory from data memory 

 

Read same memory twice in same clock cycle 

instr #1 

instr #2 

EXE IF ID MEM WB 

EXE IF ID MEM WB 

EXE IF ID MEM WB 

EXE IF ID MEM WB 

EXE IF ID MEM WB 

instr #3 

instr #4 

instr #5 

In
st

ru
ct

io
n
 o

rd
e
r 

Pipelined Processor 



COMP2611 Fall 2015 

5 Structural Hazards (2): Registers 

 If instr. #1 is a load operation, it wants to write while instr. #4 wants to 
read the register file 

 

 

 

 

 

 

 

 Solution: 

 Fact: Register access VERY fast. Takes half the time of ALU stage or less 

 always Write to registers during 1st half of each clock cycle 

 always Read from Registers during 2nd half of each clock cycle 

 Register file supports Write and Read during same clock cycle (in this 
order) 

 

Can’t read and write to registers simultaneously 

instr #1 

instr #2 

EXE IF ID MEM WB 

EXE IF ID MEM WB 

EXE IF ID MEM WB 

EXE IF ID MEM WB 

EXE IF ID MEM WB 

instr #3 

instr #4 

instr #5 

In
st

ru
ct

io
n
 o

rd
e
r 

Pipelined Processor 



6 6 Data Hazard (1) 

 Later instruction tries to read an operand before earlier instruction 
writes it 

 Example: add $s0, $t0, $t1 

          sub $t2, $s0, $t3 

 The “sub” instruction needs to wait until  the “add” instruction has 
finished writing $s0 before it reads from $s0. 

 

 

 

 

 

 

 

 

 a bubble or pipeline stall is a delay in execution of an instruction in 
an instruction pipeline in order to resolve a hazard. 

 

”add” ends writing in first 
half of the clock cycle 

”sub” reads in second half 
of the clock cycle 

COMP2611 Fall 2015 Pipelined Processor 



7 7 Solving Data Hazards with Forwarding/Bypassing 

 Forwarding partially solves the data hazard problem: 

 “add” has the result for $s0 right after stage 3 (EX) 

 If we have a “wire” that “forwards” the value of $s0 from the EX 
stage of “add” to “sub”, then “sub” does not need to wait!  

 

 

 

 

COMP2611 Fall 2015 Pipelined Processor 



8 8 Multiple Instructions forwarding 

 From the figure the decision is simple (required “forwardings” are 
represented by the two red lines): 

COMP2611 Fall 2015 Pipelined Processor 



Forwarding circuits 

 Forwarding always takes place to EX stage 

❍ Implementing these conditions in a forwarding control unit 

❍ Using two multiplexers to decide what is the input of operands A and B 
of the ALU 

 

COMP2611 Fall 2015 Pipelined Processor 

9 9 



10 10 The complete datapath with forwarding 

COMP2611 Fall 2015 Pipelined Processor 



11 11 Data Hazard (2): Load-Use Hazard 

 Even with forwarding we can not always solve the problem 
(i.e. avoid stalls)  

 Example:  lw  $s0, 20($t1) 

          sub $t2, $s0, $t3 

 The “lw” instruction produces value for $s0 in stage 4 (MEM), 

 The “sub” needs $s0 before its stage 3 (EX),  

 We can’t forward back in time!  

COMP2611 Fall 2015 Pipelined Processor 



12 12 A stall in the pipeline 

Stall inserted 

COMP2611 Fall 2015 Pipelined Processor 



13 13 The final datapath with forwarding and hazard detection 

Zero input to 
create a nop 
operation 

COMP2611 Fall 2015 Pipelined Processor 



14 14 Solving Data Hazards with Code rearrangement 

 Consider this code sequence 

 

 

   Assume a to e are stored in memory address 0($t0), 4($t0), 
8($t0),12($t0)and 16($t0)respectively. Assume forwarding is 
used. 

 

 

 

 

a = b + c; 

d = b + e; 

lw  $t1, 0($t0) 

lw  $t2, 4($t0) 

add $t3, $t1, $t2 

sw  $t3, 12($t0) 

lw  $t4, 8($t0) 

add $t5, $t1, $t4 

sw  $t5, 16($t0) 

 

15 cycles 

stall 

stall 

lw  $t1, 0($t0) 

lw  $t2, 4($t0) 

lw  $t4, 8($t0) 

add $t3, $t1, $t2 

sw  $t3, 12($t0) 

add $t5, $t1, $t4 

sw  $t5, 16($t0) 

 

11 cycles 

COMP2611 Fall 2015 Pipelined Processor 



15 Control Hazards 

 Control Hazards arise from the pipelining of branches and other 
instructions that change the Program Counter.  

 E.g. branch instruction needs three cycles of stalls before 
fetching the next instruction 

 

 

COMP2611 Fall 2015 Pipelined Processor 



16 Impact of the branch instruction on the pipeline 

COMP2611 Fall 2015 Pipelined Processor 



17 Possible solutions to the control hazard  

 Wait until the branch outcome has been determined  

 Fetch instruction after the branch outcome has been clear 

 This solution always solves the problem (i.e. program runs 
correctly), but it imposes performance penalty (3 cycles of delay) 

 Reduce branch delay via Hardware:  

 Compare the registers and compute target earlier in the pipeline 

 Add hardware to do it in the ID stage 

 Speculate on (predict) the branch decisions: 

 Static branch prediction 

 Dynamic branch prediction 

 Delayed branch 

 Reduces the branch penalty 

 Schedule independent instruction to fill the branch delay slots of 
the branch instruction 

COMP2611 Fall 2015 Pipelined Processor 



18 Reducing Branch Delay via Hardware 

 Add hardware to the MIPS pipeline to determine the branch result in 
the ID stage 

 Target address calculation requires an adder 

 Register comparator 

 

 An example (assume branch taken) 

 

 36: sub $10,$4,$8   
40: beq $1,$3,7  #PC relative branch to 40+4+4*7=72 
44: and $12,$2,$5 
  :       : 
72: lw $4,50($7) 

COMP2611 Fall 2015 Pipelined Processor 



19 An example (branch taken) 

Target address 
calculator and 
Register 
comparator 

COMP2611 Fall 2015 Pipelined Processor 



20 An example (branch taken) 

IF.Flush flushes 
the “and” 
instruction. 

COMP2611 Fall 2015 Pipelined Processor 



21 Data hazards for branches (example 1) 

 Branch instruction depends on data value (in register) to make 
decision, therefore it is prone to data hazards. 

 

 

 

 

 

 

 

 

 

 If the comparison registers are to be written by the 2nd or by the 3rd 
preceding instructions, forwarding can pass the values to the branch 
instruction in time (i.e. the branch instruction don’t need to stall) 

… 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

add $4, $5, $6 

add $1, $2, $3 

beq $1, $4, target 

COMP2611 Fall 2015 Pipelined Processor 



22 Data hazards for branches (example 2) 

 

 

 

 

 

 

 

 

 

 If the comparison registers are to be written by the immediate 
preceding instruction or by the 2rd preceding instruction, forwarding 
can NOT pass the values to the branch instruction in time (i.e. the 
branch instruction need to stall) 

 

beq stalled 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID 

ID EX MEM WB 

add $4, $5, $6 

add $1, $2, $3 

beq $1, $4, target 

COMP2611 Fall 2015 Pipelined Processor 



23 Data hazards for branches (example 3) 

 

 

 

 

 

 

 

 

 If the comparison registers are to be written by  preceding load 
instructions, forwarding may NOT be able to pass the values to the 
branch instruction in time (i.e. the branch instruction may need to 
stall) 

beq stalled 

beq stalled 

lw  $1, addr 

beq $1, $0, target 

IF ID EX MEM WB 

IF ID 

ID 

ID EX MEM WB 

COMP2611 Fall 2015 Pipelined Processor 



24 Static Branch Prediction 

 Predict the outcome of a branch in a static manner 

 either predict every branch is always taken, 

 or predict every branch is always not taken. 

 

 In MIPS 

 Always predict branch not taken (why?) 

With hardware improved pipeline, branch target is not available 
until ID whereas PC+4 is already available in IF 

 Fetch instruction right after branch, no delay if prediction is 
correct 

COMP2611 Fall 2015 Pipelined Processor 



25 MIPS with static Branch prediction (NOT TAKEN) 

Prediction 
correct 

Prediction 
incorrect, 
need to fetch 
the branch 
target and 
flush the 
wrong “lw” 

COMP2611 Fall 2015 Pipelined Processor 



26 Dynamic Branch Prediction 

 Dynamic branch prediction (the idea) 

 Look up the address of the branch instruction to see if a branch 
was taken/not taken last time (assume the current decision will be 
highly correlated with the decision of last time), 

 Fetch new instruction from the same place as last time. 

 

 Dynamic branch prediction (implementation) 

 Uses a small Branch prediction buffer (aka branch history 
table), to store recent branch outcomes (taken/not taken), 

 The branch prediction buffer is indexed by lower portion of 
recent branch instruction addresses . 

COMP2611 Fall 2015 Pipelined Processor 



COMP2611 Fall 2015 Introduction 

27 Key Concepts to Remember 

 Pipelining improves the throughput by allowing reuse of functional 
units by different instructions 

 Pipelining allows an instruction to complete in each clock cycle, 
but it requires a very careful design and additional registers to store 
intermediate results between pipeline stages 

 Pipelined Control is implemented like single cycle control with needed 
control signals are forwarded down the pipeline 

 Concurrence between instructions in the pipeline may cause 

 Data Hazard: data is needed by an instruction before it is produced 
by a previous one 

 Structural Hazard: a hardware unit is needed by an instruction 
while another is still using it 

 Control Hazard: the next instruction cannot be determined in the 
next clock cycle 

 Hazards can always be solved by delaying (inserting bubbles) 

 



COMP2611 Fall 2015 Introduction 

28 Key Concepts to Remember 

 Structural hazard is solved by:  

 Separating the instruction memory from the data memory 

 Writing to the register file in the first half of the clock cycle and 
reading from it in the second half  

 Data hazard is solved by: 

 Forwarding/Bypassing 

 Inserting bubbles 

 Control hazards are solved by: 

 Hardware: add comparator to complete the comparison earlier 

 Speculation: guess if the branch is taken or not 

 Delay the branch: fill the bubbles with useful work that is 
independent of the branch 

 


