
COMP2611 Fall 2015

1 1

The Pipelined Processor

COMP2611: Computer Organization

Pipelined Processor

COMP2611 Fall 2015

Background

Pipelined Processor 2

2

COMP2611 Fall 2015

3 High-Performance Processors

 Two techniques for designing high-performance processors by exploiting
parallelism:

 Multiprocessing: parallelism among multiple processors

 Pipelining: implements parallelism between instructions on
the same processor

Pipeline

T i m e
7 6 P M 8 9 1 0 1 1 1 2 1 2 A M

A

B

C

D

T a s k
o r d e r

In serial

T i m e
7 6 P M 8 9 1 0 1 1 1 2 1 2 A M

A

B

C

D

T a s k
o r d e r

Pipelined Processor

COMP2611 Fall 2015

4 Pipelining Principles

Key characteristics:

 Multiple tasks are processed simultaneously

 Ideally, these tasks should be independent of each other otherwise
we need to make this the case

 Pipelining does not help the latency of a single task

 It helps the throughput of the entire workload

 Completion order in pipelined execution = that in sequential execution

How much can a pipeline improve?

 Potential speedup = number of pipeline stages

 The pipeline rate is limited by the slowest pipeline stage

 Unbalanced lengths of pipeline stages can reduce speedup. Why?

Pipelined Processor

COMP2611 Fall 2015

5 Example: Bottleneck in Pipelining

 Can I align the pipeline stages as above?

 Answer: NO, because the tasks executing in parallel are not
independent (task 4 overlaps task 4)

 The condition to align is to make sure NO OVERLAP of any stages?

4

4

4

4

4

Pipelined Processor

COMP2611 Fall 2015

The MIPS Pipeline

Pipelined Processor 6

6

7 7 Pipeline Performance Example

 Assume we require:

 - 100 picoseconds for register read or write

 - 200 picoseconds for all other stages

Instruction Instruction

fetch

Register

read

ALU op Memory

access

Register

write

Total time

Load Word

(lw)

200ps 100 ps 200ps 200ps 100 ps 800ps

Store Word

(sw)

200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

Branch

(beq)

200ps 100 ps 200ps 500ps

COMP2611 Fall 2015 Pipelined Processor

8 8 Pipelined vs. Non-pipelined

 Single-cycle, non-pipelined execution:

 Pipelined execution

Total execution time

= 2400 ps

Total execution time

=1400 ps

COMP2611 Fall 2015 Pipelined Processor

9 9 The Performance Benefit

 The instruction delays in the example:

 800 ps (single cycle datapath)

 1000 ps (pipelined datapath)

 The instruction throughputs in the example:

 1 instruction per 800 ps (single cycle datapath)

 1 instruction per 200 ps (long time average for pipelined datapath)

 Pipelining does not improve the latency of a single instruction, it
improves the throughput of the system (i.e., the datapath)

 In general (ideally), if we have a N stage pipeline:

 We need N-1 cycles to fill the pipeline,

 Then one instruction will finish per cycle

 So the throughput is: Clock Rate x IC/(IC + N - 1), with IC >> N

COMP2611 Fall 2015 Pipelined Processor

10 10 The Performance Benefit

 Pipeline speed is limited by the most time consuming pipeline stage, as
this stage determines the duration of a clock cycle (why?)

 A well balanced pipeline is one such that each stage takes the same
amount of time to execute.

 When the pipeline is well balanced :

 If the pipeline is well balanced, the speedup equals to Number of
pipeline stages (a.k.a depth of the pipeline).

Timebetweeninstructions
pipelined

=
Timebetweeninstructions

nonpipelined

Numberof stages

COMP2611 Fall 2015 Pipelined Processor

11 11 MIPS Pipeline

 Basic idea: take a single-cycle datapath and separate it into 5 pieces.
Each piece responsible for a single instruction execution stage.

COMP2611 Fall 2015 Pipelined Processor

12 12 MIPS ISA for Pipelining

ISA design affects the complexity of pipeline implementation.

MIPS ISA is designed for pipelining

 All instruction are of the same length (32-bit)

Easy to fetch one instruction in first stage of the pipeline and decode
it in the second

 It has just a few similar instruction formats

With the source register fields being located in the same place in all
instructions, 2nd stage can read the register file while decoding
the type of instruction just fetched

 Memory operands only appear in loads and stores

We can use the execute stage to calculate the memory address and
then access memory in the following stage

 Alignment of memory operands on word boundaries

We need not worry about a single data transfer instruction requiring
two memory accesses; the data can be transferred between
processor and memory in a single pipeline stage

COMP2611 Fall 2015 Pipelined Processor

COMP2611 Fall 2015

13 Pipelining Instructions

In pipelined processor,

 Each instruction takes multiple steps

 Each step is independent of each other and takes different datapath

 At each cycle, one instruction is fetched and sent to the processor

 Ideally, after pipeline is fully filled, one instruction completes each cycle

instr #1 EXE IF ID MEM WB

instr #2 EXE IF ID MEM WB

EXE IF ID MEM WB

EXE IF ID MEM WB

EXE IF ID MEM WB

EXE IF ID MEM WB

instr #3

instr #4

instr #5

instr #6

processor

cycle

the entire processor’s
datapath and modules
can be fully utilized

Pipelined Processor

14 14 MIPS Pipeline Stages

Execution of each instruction is broken into 5 stages: (in the order of
execution)

– IF : Fetch the instruction from memory

– ID : Instruction decode & register read

– EX : Perform ALU operation

– MEM : Memory access (if necessary)

– WB : Write result back to register

 Each stage uses a different hardware unit and takes one clock cycle to
complete.

 Instructions can co-exist in the datapath if all of them are in
different stages of execution from one another

COMP2611 Fall 2015 Pipelined Processor

15 15 Pipeline Registers

 Additional pipeline registers are needed

 Located between the stages, i.e. IF/ID, ID/EX, EX/MEM, MEM/WB)

 Hold information produced in the previous cycle

COMP2611 Fall 2015 Pipelined Processor

Pipeline registers

16 16 Pipeline Diagram

 Every clock cycle, many instructions are simultaneously executing in a
single datapath

 Two common ways of showing the pipeline operations

 Single-clock-cycle pipeline diagram : shows the pipeline
usage in a single cycle, highlight the resources used.

– An example of lw execution is shown in following pages

 Multi-clock-cycle pipeline diagram : shows the graph of
operation over time.

COMP2611 Fall 2015 Pipelined Processor

17 17 Single clock cycle diagram: IF stage of lw

COMP2611 Fall 2015 Pipelined Processor

18 18 Single clock cycle diagram: ID stage of lw

COMP2611 Fall 2015 Pipelined Processor

19 19 Single clock cycle diagram: EXE stage of lw

COMP2611 Fall 2015 Pipelined Processor

20 20 Single clock cycle diagram: MEM stage of lw

COMP2611 Fall 2015 Pipelined Processor

21 21 Single clock cycle diagram: WB stage of lw

COMP2611 Fall 2015 Pipelined Processor

22 22 Single clock cycle diagram: WB stage of lw

 There is a problem with the WB stage of lw!

Instruction supplying the
write register number is
NOT lw !

COMP2611 Fall 2015 Pipelined Processor

23 23 The corrected Datapath for lw

 To solve this problem: the “write register” information is forwarded
from the MEM/WB pipeline registers.

COMP2611 Fall 2015 Pipelined Processor

24 24 Multi-clock-cycle pipeline diagram : traditional view

 The following diagram shows the execution of a series of instructions.

COMP2611 Fall 2015 Pipelined Processor

25 25 Multi-clock-cycle pipeline diagram: graphical view

 The multi-clock-cycle form showing the hardware utilizations.

COMP2611 Fall 2015 Pipelined Processor

26 26 Single-clock-cycle diagram in CC5

COMP2611 Fall 2015 Pipelined Processor

27 27 The Pipeline operation

 Ideally

 One stage begins in every cycle.

 One stage completes in each cycle.

 Each instruction takes 5 cycles

 In each clock cycle, several instructions are active.

 Different stages are executing different instructions.

 Difficulty:

 How to generate the control signals ?

 we need to set the control signals for each pipeline stage for each
instruction.

COMP2611 Fall 2015 Pipelined Processor

COMP2611 Fall 2015

Pipelined control

Pipelined Processor 28

28

29 29 Pipelined Control?

 Let’s start with a simple design that views the problem in a greatly
simplified way.

 Use the same controls as the single-cycle datapath, but
pipeline them so that the correct control signals are supplied for
each stage of the instruction.

 Pass control signals together with the instruction through
the pipeline.

 Temporarily ignore data dependence related problems (Hazards),
and will provide solutions to this problem later.

COMP2611 Fall 2015 Pipelined Processor

30 30 Control Signals Identified

COMP2611 Fall 2015 Pipelined Processor

31 31 Control Signals For Each Stage

The control signals required by each stage are grouped

Stage 1: Instruction fetch (IF) – no control signals, the instruction is
read from the instruction memory and PC is updated to PC+4.

Stage 2: Instruction decode and register read (ID) – no control
signals, instruction is decoded and source operands are read from
register file.

Stage 3: Execute (EX)– RegDst, ALUOp, and ALUSrc.

Stage 4: Memory Access (MEM)– Branch, MemRead, and MemWrite

Stage 5: Write Back (WB) –MemToReg and RegWrite

COMP2611 Fall 2015 Pipelined Processor

32 32 32 Control Signals For Each Stage

 The group of control signals and their values for different classes of
instructions:



Instructions

EX MEM WB

RegDst ALUOp1 ALUOp2 ALUSrc Branch MemRead MemWrite RegWrite MemToReg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

COMP2611 Fall 2015 Pipelined Processor

The Pipelined Control: passing the controls

 Control signals are passed to the next stage only if they are required

COMP2611 Fall 2015 Pipelined Processor

33 33

RegWrite

MemToReg

Branch

MemRead

MemWrite

RegDst

ALUOp1

ALUOp2

ALUSrc

34 34 The Pipelined Control: the complete datapath

COMP2611 Fall 2015 Pipelined Processor

