
COMP2611 Fall 2015

Assessing and Understanding
Performance

COMP2611: Computer Organization

 Learn the components and factors that influence performance

 Introduce methodologies to evaluate performance

 Metric for evaluation – performance measure

 Basis for comparison – benchmark

 Understand cost vs. performance implications of different architectures

 Important for computer architects, programmer and decision maker

COMP2611 Fall 2015 Assessing & Understanding Performance

2 Assessing and Understanding Performance

COMP2611 Fall 2015 Assessing & Understanding Performance

3

C c o m p i l e r

A s s e m b l e r

Understanding Performance

s w a p (i n t v [] , i n t k)

{ i n t t e m p ;

 t e m p = v [k] ;

 v [k] = v [k + 1] ;

 v [k + 1] = t e m p ;

}

s w a p :

 m u l i $ 2 , $ 5 , 4

 a d d $ 2 , $ 4 , $ 2

 l w $ 1 5 , 0 ($ 2)

 l w $ 1 6 , 4 ($ 2)

 s w $ 1 6 , 0 ($ 2)

 s w $ 1 5 , 4 ($ 2)

 j r $ 3 1

0 0
1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Algorithm

 Determines number of operations
executed in the program

 Programming language, compiler,
architecture

 Determine number of machine
instructions executed per operation

 Processor and memory system

 Determine how fast each instruction is
executed and how fast the program
executed

 I/O system (including OS)

 Determines how fast I/O operations are
executed

Defining Performance

 Which airplane has the best performance?

COMP2611 Fall 2015 Assessing & Understanding Performance

4

COMP2611 Fall 2015 Assessing & Understanding Performance

5 Measuring Performance

 CPU time:

 Time spent running (or executing) the program only

 Does not count I/O and time spent on running other programs

 System CPU time: CPU time spent in operating system (OS)

 Computer architect and programmer care about it

 Response time (execution time, elapsed time or wall-clock time):

 Time between the start and completion of a task

 (i.e., CPU time + waiting time)

 Waiting time  disk access, memory access, I/O, OS overhead,…

 Computer end-users care about it

 Throughput:

 Total number of jobs completed per unit time

 Computer administrators care about it

COMP2611 Fall 2015 Assessing & Understanding Performance

6 Response Time vs. Throughput

Question: is the following true? Throughput = 1/ Response time

Answer: No! it is true only if components in the system do not overlap
in time

Example

 No overlap

 Overlap

 Job B Job A

Job A Job B

5s 5s

Throughput = 2/10 = 0.2 = 1/5

3s 3s 2s

(overlap)

Throughput = 2/8 = 0.25  1/5

COMP2611 Fall 2015 Assessing & Understanding Performance

7 Execution Time & Performance

 For some program running on a machine X:

 Execution time: the smaller the value is better

 Performance: the bigger the value is better

 “Machine X is n times faster than machine Y” means:

 “Machine X is m% faster than Y” means:

X
X

time execution
e performanc

1


X

Y

Y

X

time execution

time execution

e performance

e performanc
n  

X

Y

Y

X

time execution

time execution

e performanc

e performanc
n    1 + m / 100

COMP2611 Fall 2015 Assessing & Understanding Performance

8 Performance Comparison: Example

 Example:

 Consider two machines X and Y

 Machine X runs a program in 10 sec

 Machine Y runs the same program in 15 sec

 We know that A is n times faster than B iff:

15 / 10 = 1.5 = 1 + 50/100 therefore:

 X is 1.5 times faster than Y;

 X is 50% faster than Y.

X

Y

Y

X

time execution

time execution

e performance

e performanc
n  

COMP2611 Fall 2015 Assessing & Understanding Performance

9

Almost all computers have a digital clock that runs at a constant rate and
determines when basic actions take place

 Clock  to synchronize occurrence of different events in the system

 Clock cycles refer to clock “ticks”

 Clock cycle time (or clock period)

 time between ticks (in second)

 Clock rate

 number of clock-ticks per second (in Hz)

Example:

 A 200 MHz clock has a cycle time of 1 / (200x106) = 5x10-9 = 5 ns

Clock Cycles

Clock (cycles)

Data transfer
and computation

Update state

Clock period

CPU Time vs. Clock rate

 CPU time

 Performance can be improved by:

 Reducing the length of the clock cycle (or increasing the clock
rate), or

 Reducing the number of cycles required for a program

CPU Time = #CPU Clock Cycles for a program´Clock Cycle Time

or

CPU Time =
CPU Clock Cycles for a program

Clock Rate

COMP2611 Fall 2015 Assessing & Understanding Performance

10

COMP2611 Fall 2015 Assessing & Understanding Performance

11 Cycles Per Instruction

Wrong assumption

of CPU clock cycles in a program = # of instructions in the program

Reasons

 Execution times for different type of instructions may vary

 Multiplication takes more time than addition

 Floating-point operations take more time than integer ones

 Accessing memory takes more time than accessing registers

Meaning

Cycles per instructions (CPI) = average #of clock cycle each
instruction takes to execute in a program.

#Clock Cycles = #Instruction ́ Cycles per Instruction

COMP2611 Fall 2015 Assessing & Understanding Performance

12 CPI

 Let there be n different instruction classes (with different CPIs)

 For a given program, suppose we know:

CPIi = CPI for instruction class i

 Ci = number of instructions of class i

 The formula

can be generalized to

 Thus, CPI for the entire program

count ninstructio × CPI = cycles clock CPU

)C × (CPI= cycles clock CPU ii

n

1=i
Σ

i

n

1=i
ii

n

1=i
C)C × (CPI= CPI ΣΣ

COMP2611 Fall 2015 Assessing & Understanding Performance

13 Example: Comparing Code Segments

 Description

 A particular machine has the following hardware facts:

 For a given C++ statement, a compiler designer considers two code
sequences with the following instruction counts:

 Problem to solve

 Which code sequence executes the most instructions?

 Which is faster?

 What is the CPI for each sequence?

2 B
3 C

1 A
CPI for this instruction class Instruction class

4

2

A

1

1

B

2 1

1 2

C

Instruction counts for instruction classes
Code sequence

COMP2611 Fall 2015 Assessing & Understanding Performance

14 Example: Answer

 Instruction count:

 CPU clock cycles:

 CPI:

 Remarks:

 Sequence 2 has more instructions, but it is actually more efficient

 Instruction count alone is not a reliable measure, should use CPI

 If these 2 codes are for different machines with different clock rates,

 Is CPI still a good enough metric to tell which code is better?

)C × (CPI= cycles clock CPU ii

n

1=i
Σ

(faster) 9=1×3+1×2+4×1= cycles clock CPU

10=2×3+1×2+2×1= cycles clock CPU

2

1

(more) nsinstructio 6 = 1 + 1 + 4 :2 Sequence

nsinstructio 5 = 2 + 1 + 2 : 1 Sequence

CPI1 =
10

5
=2 CPI2 =

9

6
=1.5

The only complete and reliable measure of performance is

CPU execution time

Other measures are unreliable because they are not consistent

 e.g., changing the instruction set from RISC to CISC to lower
instruction count leads to:

 a larger CPI, or

 a complex hardware resulting in slower clock rate

 Either case can offset the improvement in instruction count

Other inconsistent measures

 # of clock cycles to execute a program

 # of instructions in program

 # of cycles per second

 # of cycles per instruction, or # of instructions per second

COMP2611 Fall 2015 Assessing & Understanding Performance

15 IRON LAW !

 A program is broken down into instructions

 Each instruction takes multiple clock cycles to execute

 Each clock cycle takes a number of seconds

 Instruction count (instructions executed, not static code)

 Mostly determined by compiler and ISA (can be measured by using
profilers/simulators)

 CPI

 Mostly determined by ISA and CPU organization

 Clock rate

 Mostly determined by technology and CPU organization (often given)

=
of instructions

a program

seconds

clock cycle

of clock cycles

of instructions
* *

= instruction count * CPI * clock cycle time

 seconds

 program

= instruction count * CPI / clock rate

 Time =

COMP2611 Fall 2015 Assessing & Understanding Performance

16 IRON LAW: Performance Equation

Description

 Two implementations of the same ISA, for a program

 In computer A with clock cycle time 250ps, the CPI is 2.0

 In computer B with clock cycle time 500ps, the CPI of 1.2

Question

 Which computer is faster for this program, and by how much?

Answer (assume the program has I instructions)

CPU timeA =I x CPIA x clock cycle timeA

 =I x 2.0 x 250ps = 500 x I ps

CPU timeB =I x 1.2 x 500ps = 600 x I ps

CPU TimeB

CPU TimeA

=
600 x I ps

500 x I ps
=1.2  A is faster than B, by 20%

COMP2611 Fall 2015 Assessing & Understanding Performance

17 Example: Using the Performance Equation

COMP2611 Fall 2015 Assessing & Understanding Performance

18 Common Ways to Improve Performance

Referring to the three components in the iron law, we can either

 Shorten clock cycle time (i.e. increase clock rate)

 e.g. run the processor at a higher clock frequency

 Reduce the CPI

 e.g. pipelining

 Reduce the number of instructions of a program

 e.g. use a compiler that can optimize the code generation better

Remarks

 Fine to use CPI when two conditions below are true in the comparison

 # of instructions in the program remain unchanged, and

 Clock rate remain unchanged

 These two conditions are often not true when comparing two ISAs

Power Trends

 In CMOS IC technology

FrequencyVoltageload CapacitivePower 2 

×1000 ×30 5V → 1V

COMP2611 Fall 2015 Assessing & Understanding Performance

19

Reducing Power

 Suppose a new CPU has

 85% of capacitive load of old CPU

 15% voltage and 15% frequency reduction

Pnew

Pold

=
Cold x 0.85 x (Vold x 0.85)2 x Fold x 0.85

Cold x Vold

2 x Fold

=0.854 =0.52

 The power wall

 We can’t reduce voltage further

 We can’t remove more heat

 How else can we improve performance?

COMP2611 Fall 2015 Assessing & Understanding Performance

20

Uniprocessor Performance

Constrained by power, instruction-level parallelism,
memory latency

COMP2611 Fall 2015 Assessing & Understanding Performance

21

Multiprocessors

 Multicore microprocessors

 More than one processor per chip

 Requires explicitly parallel programming

 Compare with instruction level parallelism

• Hardware executes multiple instructions at once

• Hidden from the programmer

 Hard to do

• Programming for performance

• Load balancing

• Optimizing communication and synchronization

 Today, we typically use multi-core to improve the throughput rather
than the speed of a particular program

COMP2611 Fall 2015 Assessing & Understanding Performance

22

COMP2611 Fall 2015 Assessing & Understanding Performance

23 Comparing and Summarizing Performance

What should we use? Ideally, we should use real applications that we
use everyday

 Programs typical of expected class of applications

 e.g., software development tools, scientific applications, graphics, etc.

In reality, benchmarks

 SPEC (Standard Performance Evaluation Cooperation) suite

 Develops benchmarks for CPU, I/O, Power, Mail, Web, …

 CPU performance: SPEC2006

• Measures elapsed time of a selection of programs with negligible I/O

• Normalize the result relative to a reference machine

• Summarize the result as a geometric mean of performance ratios contains 12
integer benchmarks (CINT2006) and 17 floating point benchmarks (CFP2006)

 Save money and effort

 Smaller than real programs, easier to standardize

― Not representative of real workload

Execution time ratioi

i=1

n

Õn

Name Description IC×109 CPI Exec time Ref time SPECratio

perl Interpreted string processing 2,118 0.75 637 9,777 15.3

bzip2 Block-sorting compression 2,389 0.85 817 9,650 11.8

gcc GNU C Compiler 1,050 1.72 724 8,050 11.1

mcf Combinatorial optimization 336 10.00 1,345 9,120 6.8

go Go game (AI) 1,658 1.09 721 10,490 14.6

hmmer Search gene sequence 2,783 0.80 890 9,330 10.5

sjeng Chess game (AI) 2,176 0.96 837 12,100 14.5

libquantum Quantum computer simulation 1,623 1.61 1,047 20,720 19.8

h264avc Video compression 3,102 0.80 993 22,130 22.3

omnetpp Discrete event simulation 587 2.94 690 6,250 9.1

astar Games/path finding 1,082 1.79 773 7,020 9.1

xalancbmk XML parsing 1,058 2.70 1,143 6,900 6.0

Geometric mean 11.7

CINT2006 for Opteron X4 2356 24

COMP2611 Fall 2015 Assessing & Understanding Performance

COMP2611 Fall 2015 Assessing & Understanding Performance

25 Key Concepts to Remember

 Five basic components of a computer

 input, output, memory, processor (datapath + control)

 Hierarchical layers of abstraction in hardware and software

 Help cope with design complexity by hiding low level details

 Instruction set architecture

 Important abstraction interfaces hardware and low-level software

 Iron Law:

 execution time is the single-most consistent measure of
performance

 Performance is always relative to a specific program

 To compare performance it is easier to use benchmarks

 The best programs to use for benchmarks are real applications

 Power consumption (heat dissipation) is a limiting factor

 Use parallelism and multi-core to improve performance

