
COMP2611 Fall 2015 Memory System

1

Virtual Memory

(optional)

COMP2611 Fall 2015 Memory System

2 Why Virtual Memory?

Motivations:

 Protection

Ensure that programs cannot interfere with each others

 Sharing of memory between programs to increase memory utilization

As running programs only actively use a fraction of the memory

 Allowing a program to exceed the size of the main memory

Use secondary storage (e.g. magnetic disks) to backup

i.e. make use of the main memory as a "cache" for magnetic disks

In systems today,

 Memory address in our programs is considered as virtual address

Virtual memory is the technique to seamlessly map

virtual addresses to physical addresses

(seamlessly = automatically map in hardware)

COMP2611 Fall 2015 Memory System

3 Virtual Address vs Physical Address

The processor generates virtual addresses

 While the memory is accessed using physical addresses

That means, programs see the virtual address space

 While the system sees the physical address space

 Virtual address space is as big as a register can address

Ideally, physical address = mapping_function(virtual address)

 Mapping function can be implemented as a table in system memory

 But, if we map at word or block level, the table is too big!

 Instead, split the virtual and physical address space into pages

A typical page size is 4Kbytes

Then, the mapping is between virtual and physical pages

COMP2611 Fall 2015 Memory System

4 Virtual Memory: Basic Concepts

 The “mapping function” is implemented as a table

program 1 program n

Virtual address space Virtual address space

real address space

COMP2611 Fall 2015 Memory System

5

process 1

Virtual address space

real address space

Virtual Memory: Basic Concepts

More precisely

 Portion of V, when not currently in use, is stored in secondary storage

 When it is requested later, OS shuttles it into the memory, replacing other
portions not currently in use (replacement policy answers this part)

Secondary storage, e.g. harddisk

COMP2611 Fall 2015 Memory System

6 How Does Virtual Memory Work?

 Virtual page size = physical page size

Address
mapping

Virtual pages Physical pages

Disk
addresses

Never used,

so no need to
mapped to physical
memory

Pages not mapped
can be used by other
programs better
memory utilization!

COMP2611 Fall 2015 Memory System

7 Page Table

Implementation of mapping function: page table

 Page table maps virtual pages to physical pages

Example

Question: How to convert a virtual address into a virtual page number?

0x0100

0x0400

0x0200

0x1600

0x2200

…
…

Page table

CPU
virtual addr. physical addr.

memory

COMP2611 Fall 2015 Memory System

8 Address Translation Example

 Virtual address space: 4 GB (232)

 Maximum main (physical) memory size: 1 GB (230)

 Page size: 4 KB (212)

Virtual address

3 2 1 0 1 1 1 0 9 8 1 5 1 4 1 3 1 2 3 1 3 0 2 9 2 8 2 7

P a g e o f f s e t V i r t u a l p a g e n u m b e r

T r a n s l a t i o n

3 2 1 0 1 1 1 0 9 8 1 5 1 4 1 3 1 2 2 9 2 8 2 7

P a g e o f f s e t P h y s i c a l p a g e n u m b e r

Physical address

copy

COMP2611 Fall 2015 Memory System

9 Page Faults

 It is possible that a mapping does not exist upon first access

 Try to map through the page table results in a page fault

 Operating system is invoked to resolve the page fault

 Resolve means find the mapping or setup appropriate mapping

 A page fault usually has an enormous penalty

Page faults are handled in software

It can take millions of clock cycles to process

Dominated by the time to get the first word for typical page sizes

Program execution is stalled until page fault is resolved

So, pages should be large enough

 Too small the page size, too often we see page faults

 Too large the page size, higher chances of page fragmentation

COMP2611 Fall 2015 Memory System

10 Page Table: Put All Together

Mapping virtual addresses to physical addresses through a page table

 Page table is a structure that resides in the memory

 Starting address of the page table is stored in the page table register

 Each page table entry stores

a valid bit to indicate if the mapping exists, and

the corresponding physical page number

 Since every possible virtual page is represented in the page table,

 There is no need to have a tag field

COMP2611 Fall 2015 Memory System

11 Page Table: Put All Together (cont’d)

P a g e o f f s e t V i r t u a l p a g e n u m b e r

V i r t u a l a d d r e s s

P a g e o f f s e t P h y s i c a l p a g e n u m b e r

P h y s i c a l a d d r e s s

P h y s i c a l p a g e n u m b e r V a l i d

I f 0 t h e n p a g e i s n o t
p r e s e n t i n m e m o r y

P a g e t a b l e r e g i s t e r

P a g e t a b l e

2 0 1 2

1 8

3 1 3 0 2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

COMP2611 Fall 2015 Memory System

12 Example of Looking Up Page Table

 Page size = 4Kbyte (212)

 Virtual address space = 232

 Physical address space = 228

 What are the sizes of the virtual and physical page number?

Size of virtual page number = 32 – 12 = 20

Size of physical page number = 28 – 12 = 16

 What is the physical address for 0xFFF21340 using page table below?

0xFFF21340 = 1111 1111 1111 0010 0001 0011 0100 00002

Virtual page number = 0xFFF21

Physical address = 0x0AC0340 …

0x0001

0x0AC0

0x0AB0

0x0200

…

Page table

entry 0xFFF20

COMP2611 Fall 2015 Memory System

13 Fast Address Translation

Problem with pure page table approach

 Page tables are in main memory

 Every memory access by a program can take at least twice as long

One memory access to obtain the physical address

The second access to get the data

 Bad performance!

Solution

 Translation-lookaside buffer (TLB), a cache copy of the page table

TLB relies on the locality of reference to the page table

When a translation for a virtual page number is used, it will
probably be needed again in the near future as the references to
the words on that page have both temporal and spatial locality

 i.e. TLB is a special cache keeping track of recently used translations

 TLB is usually a small fully-associative cache, (e.g. 16~64 entries)

COMP2611 Fall 2015 Memory System

14 Working with TLB and Page Table

Upon each memory access

 Mapping for virtual address generated by CPU is first looked up in TLB

 If found, do the translation and done

 If not found, then looked up in the page table residing in memory

If mapping (i.e. translation) not found in the page table,

 Page fault!

 OS is invoked to handle the page fault

 After OS resolve the page fault, the memory access is restarted

COMP2611 Fall 2015 Memory System

15 Translation-Lookaside Buffer (TLB)

1
1
1
1
0
1
1

1
1

1

0

0

1
0
0
0
0
0
0

1
1

1

0

0

1
0
0
1
0
1
1

1
1

1

0

0

Physical page

or disk addressValidDirtyRef

Page table

Physical memory

Virtual page

number

Disk storage

1
1
1
1
0
1

0
1
1
0
0
0

1
1
1
1
0
1

Physical page

addressValidDirtyRef

TLB

Tag

COMP2611 Fall 2015 Memory System

16 Key Concepts to Remember

 Ordinary programs exhibit two different notions of locality

Temporal locality and spatial locality

 Multilevel memory organizations achieve cost/performance tradeoff by
exploiting the principle of locality

 Cache

Direct-mapped, set-associative, or fully-associative

Data are transferred in blocks from main memory to cache upon misses

Block replacement uses either random or least recently used (LRU)

The write strategy for caches is either write-through or write-back

 Virtual memory

The technique to seamlessly map virtual addresses to physical addresses

Needed for protection and efficient sharing of memory among programs

Mapping is implemented via a page table

TLB is cache copy of page table for the sake of performance

